Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
7a0ed0f8
"heap_lang/lib/spin_lock.v" did not exist on "149d1ec6927389594259a1867e2eac7b40fc3e04"
Commit
7a0ed0f8
authored
4 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Reorganize `big_op` file to remove `sbi` section.
parent
290363a5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/big_op.v
+159
-204
159 additions, 204 deletions
theories/bi/big_op.v
with
159 additions
and
204 deletions
theories/bi/big_op.v
+
159
−
204
View file @
7a0ed0f8
...
@@ -65,7 +65,7 @@ Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
...
@@ -65,7 +65,7 @@ Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
(
big_sepM2
(
λ
_
x1
x2
,
P
)
m1
m2
)
:
bi_scope
.
(
big_sepM2
(
λ
_
x1
x2
,
P
)
m1
m2
)
:
bi_scope
.
(** * Properties *)
(** * Properties *)
Section
bi_
big_op
.
Section
big_op
.
Context
{
PROP
:
bi
}
.
Context
{
PROP
:
bi
}
.
Implicit
Types
P
Q
:
PROP
.
Implicit
Types
P
Q
:
PROP
.
Implicit
Types
Ps
Qs
:
list
PROP
.
Implicit
Types
Ps
Qs
:
list
PROP
.
...
@@ -231,6 +231,20 @@ Section sep_list.
...
@@ -231,6 +231,20 @@ Section sep_list.
[
∗
]
replicate
(
length
l
)
P
⊣⊢
[
∗
list
]
y
∈
l
,
P
.
[
∗
]
replicate
(
length
l
)
P
⊣⊢
[
∗
list
]
y
∈
l
,
P
.
Proof
.
induction
l
as
[|
x
l
]=>
//=
;
by
f_equiv
.
Qed
.
Proof
.
induction
l
as
[|
x
l
]=>
//=
;
by
f_equiv
.
Qed
.
Lemma
big_sepL_later
`{
BiAffine
PROP
}
Φ
l
:
▷
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
∗
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_later_2
Φ
l
:
([
∗
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
⊢
▷
[
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
.
Proof
.
by
rewrite
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_laterN
`{
BiAffine
PROP
}
Φ
n
l
:
▷^
n
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
∗
list
]
k
↦
x
∈
l
,
▷^
n
Φ
k
x
)
.
Proof
.
apply
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_laterN_2
Φ
n
l
:
([
∗
list
]
k
↦
x
∈
l
,
▷^
n
Φ
k
x
)
⊢
▷^
n
[
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
.
Proof
.
by
rewrite
(
big_opL_commute
_)
.
Qed
.
Global
Instance
big_sepL_nil_persistent
Φ
:
Global
Instance
big_sepL_nil_persistent
Φ
:
Persistent
([
∗
list
]
k
↦
x
∈
[],
Φ
k
x
)
.
Persistent
([
∗
list
]
k
↦
x
∈
[],
Φ
k
x
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Proof
.
simpl
;
apply
_
.
Qed
.
...
@@ -249,6 +263,16 @@ Section sep_list.
...
@@ -249,6 +263,16 @@ Section sep_list.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Global
Instance
big_sepL_affine_id
Ps
:
TCForall
Affine
Ps
→
Affine
([
∗
]
Ps
)
.
Global
Instance
big_sepL_affine_id
Ps
:
TCForall
Affine
Ps
→
Affine
([
∗
]
Ps
)
.
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL_nil_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
list
]
k
↦
x
∈
[],
Φ
k
x
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
l
:
(
∀
k
x
,
Timeless
(
Φ
k
x
))
→
Timeless
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Global
Instance
big_sepL_timeless_id
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Ps
:
TCForall
Timeless
Ps
→
Timeless
([
∗
]
Ps
)
.
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
End
sep_list
.
End
sep_list
.
Section
sep_list_more
.
Section
sep_list_more
.
...
@@ -519,6 +543,34 @@ Section sep_list2.
...
@@ -519,6 +543,34 @@ Section sep_list2.
apply
forall_intro
=>
k
.
by
rewrite
(
forall_elim
(
S
k
))
.
apply
forall_intro
=>
k
.
by
rewrite
(
forall_elim
(
S
k
))
.
Qed
.
Qed
.
Lemma
big_sepL2_later_1
`{
BiAffine
PROP
}
Φ
l1
l2
:
(
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
⊢
◇
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
later_and
big_sepL_later
(
timeless
⌜
_
⌝%
I
)
.
rewrite
except_0_and
.
auto
using
and_mono
,
except_0_intro
.
Qed
.
Lemma
big_sepL2_later_2
Φ
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
)
⊢
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
later_and
big_sepL_later_2
.
auto
using
and_mono
,
later_intro
.
Qed
.
Lemma
big_sepL2_laterN_2
Φ
n
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷^
n
Φ
k
y1
y2
)
⊢
▷^
n
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
laterN_and
big_sepL_laterN_2
.
auto
using
and_mono
,
laterN_intro
.
Qed
.
Lemma
big_sepL2_flip
Φ
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l2
;
l1
,
Φ
k
y2
y1
)
⊣⊢
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Proof
.
revert
Φ
l2
.
induction
l1
as
[|
x1
l1
IH
]=>
Φ
-
[|
x2
l2
]
//=
;
simplify_eq
.
by
rewrite
IH
.
Qed
.
Global
Instance
big_sepL2_nil_persistent
Φ
:
Global
Instance
big_sepL2_nil_persistent
Φ
:
Persistent
([
∗
list
]
k
↦
y1
;
y2
∈
[];
[],
Φ
k
y1
y2
)
.
Persistent
([
∗
list
]
k
↦
y1
;
y2
∈
[];
[],
Φ
k
y1
y2
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Proof
.
simpl
;
apply
_
.
Qed
.
...
@@ -534,6 +586,14 @@ Section sep_list2.
...
@@ -534,6 +586,14 @@ Section sep_list2.
(
∀
k
x1
x2
,
Affine
(
Φ
k
x1
x2
))
→
(
∀
k
x1
x2
,
Affine
(
Φ
k
x1
x2
))
→
Affine
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Affine
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepL2_alt
.
apply
_
.
Qed
.
Proof
.
rewrite
big_sepL2_alt
.
apply
_
.
Qed
.
Global
Instance
big_sepL2_nil_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
list
]
k
↦
y1
;
y2
∈
[];
[],
Φ
k
y1
y2
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL2_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
l1
l2
:
(
∀
k
x1
x2
,
Timeless
(
Φ
k
x1
x2
))
→
Timeless
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepL2_alt
.
apply
_
.
Qed
.
End
sep_list2
.
End
sep_list2
.
Section
and_list
.
Section
and_list
.
...
@@ -936,6 +996,20 @@ Section map.
...
@@ -936,6 +996,20 @@ Section map.
by
rewrite
pure_True
//
True_impl
.
by
rewrite
pure_True
//
True_impl
.
Qed
.
Qed
.
Lemma
big_sepM_later
`{
BiAffine
PROP
}
Φ
m
:
▷
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_opM_commute
_)
.
Qed
.
Lemma
big_sepM_later_2
Φ
m
:
([
∗
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
⊢
▷
[
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
.
Proof
.
by
rewrite
big_opM_commute
.
Qed
.
Lemma
big_sepM_laterN
`{
BiAffine
PROP
}
Φ
n
m
:
▷^
n
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
▷^
n
Φ
k
x
)
.
Proof
.
apply
(
big_opM_commute
_)
.
Qed
.
Lemma
big_sepM_laterN_2
Φ
n
m
:
([
∗
map
]
k
↦
x
∈
m
,
▷^
n
Φ
k
x
)
⊢
▷^
n
[
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
.
Proof
.
by
rewrite
big_opM_commute
.
Qed
.
Global
Instance
big_sepM_empty_persistent
Φ
:
Global
Instance
big_sepM_empty_persistent
Φ
:
Persistent
([
∗
map
]
k
↦
x
∈
∅
,
Φ
k
x
)
.
Persistent
([
∗
map
]
k
↦
x
∈
∅
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
/
big_opM_def
map_to_list_empty
.
apply
_
.
Qed
.
Proof
.
rewrite
big_opM_eq
/
big_opM_def
map_to_list_empty
.
apply
_
.
Qed
.
...
@@ -949,6 +1023,13 @@ Section map.
...
@@ -949,6 +1023,13 @@ Section map.
Global
Instance
big_sepM_affine
Φ
m
:
Global
Instance
big_sepM_affine
Φ
m
:
(
∀
k
x
,
Affine
(
Φ
k
x
))
→
Affine
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
.
(
∀
k
x
,
Affine
(
Φ
k
x
))
→
Affine
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
.
intros
.
apply
big_sepL_affine
=>
_
[??];
apply
_
.
Qed
.
Proof
.
rewrite
big_opM_eq
.
intros
.
apply
big_sepL_affine
=>
_
[??];
apply
_
.
Qed
.
Global
Instance
big_sepM_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
map
]
k
↦
x
∈
∅
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
/
big_opM_def
map_to_list_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepM_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
m
:
(
∀
k
x
,
Timeless
(
Φ
k
x
))
→
Timeless
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
.
intros
.
apply
big_sepL_timeless
=>
_
[??];
apply
_
.
Qed
.
End
map
.
End
map
.
(** ** Big ops over two maps *)
(** ** Big ops over two maps *)
...
@@ -963,6 +1044,14 @@ Section map2.
...
@@ -963,6 +1044,14 @@ Section map2.
set_unfold
=>
k
.
by
rewrite
!
elem_of_dom
.
set_unfold
=>
k
.
by
rewrite
!
elem_of_dom
.
Qed
.
Qed
.
Lemma
big_sepM2_flip
Φ
m1
m2
:
([
∗
map
]
k
↦
y1
;
y2
∈
m2
;
m1
,
Φ
k
y2
y1
)
⊣⊢
([
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
and_proper
;
[
apply
pure_proper
;
naive_solver
|]
.
rewrite
-
map_zip_with_flip
map_zip_with_map_zip
big_sepM_fmap
.
apply
big_sepM_proper
.
by
intros
k
[
b
a
]
.
Qed
.
(** The lemmas [big_sepM2_mono], [big_sepM2_ne] and [big_sepM2_proper] are more
(** The lemmas [big_sepM2_mono], [big_sepM2_ne] and [big_sepM2_proper] are more
generic than the instances as they also give [mi !! k = Some yi] in the premise. *)
generic than the instances as they also give [mi !! k = Some yi] in the premise. *)
Lemma
big_sepM2_mono
Φ
Ψ
m1
m2
:
Lemma
big_sepM2_mono
Φ
Ψ
m1
m2
:
...
@@ -1282,6 +1371,31 @@ Section map2.
...
@@ -1282,6 +1371,31 @@ Section map2.
destruct
(
m1
!!
k
)
as
[
x1
|],
(
m2
!!
k
)
as
[
x2
|];
naive_solver
.
destruct
(
m1
!!
k
)
as
[
x1
|],
(
m2
!!
k
)
as
[
x2
|];
naive_solver
.
Qed
.
Qed
.
Lemma
big_sepM2_later_1
`{
BiAffine
PROP
}
Φ
m1
m2
:
(
▷
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
)
⊢
◇
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷
Φ
k
x1
x2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
later_and
(
timeless
⌜_⌝%
I
)
.
rewrite
big_sepM_later
except_0_and
.
auto
using
and_mono_r
,
except_0_intro
.
Qed
.
Lemma
big_sepM2_later_2
Φ
m1
m2
:
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷
Φ
k
x1
x2
)
⊢
▷
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
later_and
-
(
later_intro
⌜_⌝%
I
)
.
apply
and_mono_r
.
by
rewrite
big_opM_commute
.
Qed
.
Lemma
big_sepM2_laterN_2
Φ
n
m1
m2
:
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷^
n
Φ
k
x1
x2
)
⊢
▷^
n
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
.
Proof
.
induction
n
as
[|
n
IHn
];
first
done
.
rewrite
later_laterN
-
IHn
-
big_sepM2_later_2
.
apply
big_sepM2_mono
.
eauto
.
Qed
.
Global
Instance
big_sepM2_empty_persistent
Φ
:
Global
Instance
big_sepM2_empty_persistent
Φ
:
Persistent
([
∗
map
]
k
↦
y1
;
y2
∈
∅
;
∅
,
Φ
k
y1
y2
)
.
Persistent
([
∗
map
]
k
↦
y1
;
y2
∈
∅
;
∅
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepM2_empty
.
apply
_
.
Qed
.
Proof
.
rewrite
big_sepM2_empty
.
apply
_
.
Qed
.
...
@@ -1297,6 +1411,14 @@ Section map2.
...
@@ -1297,6 +1411,14 @@ Section map2.
(
∀
k
x1
x2
,
Affine
(
Φ
k
x1
x2
))
→
(
∀
k
x1
x2
,
Affine
(
Φ
k
x1
x2
))
→
Affine
([
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ
k
y1
y2
)
.
Affine
([
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
_
.
Qed
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
_
.
Qed
.
Global
Instance
big_sepM2_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
map
]
k
↦
x1
;
x2
∈
∅
;
∅
,
Φ
k
x1
x2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
map_zip_with_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepM2_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
m1
m2
:
(
∀
k
x1
x2
,
Timeless
(
Φ
k
x1
x2
))
→
Timeless
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
)
.
Proof
.
intros
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
_
.
Qed
.
End
map2
.
End
map2
.
(** ** Big ops over finite sets *)
(** ** Big ops over finite sets *)
...
@@ -1452,6 +1574,20 @@ Section gset.
...
@@ -1452,6 +1574,20 @@ Section gset.
by
rewrite
pure_True
?True_impl
;
last
set_solver
.
by
rewrite
pure_True
?True_impl
;
last
set_solver
.
Qed
.
Qed
.
Lemma
big_sepS_later
`{
BiAffine
PROP
}
Φ
X
:
▷
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
set
]
y
∈
X
,
▷
Φ
y
)
.
Proof
.
apply
(
big_opS_commute
_)
.
Qed
.
Lemma
big_sepS_later_2
Φ
X
:
([
∗
set
]
y
∈
X
,
▷
Φ
y
)
⊢
▷
([
∗
set
]
y
∈
X
,
Φ
y
)
.
Proof
.
by
rewrite
big_opS_commute
.
Qed
.
Lemma
big_sepS_laterN
`{
BiAffine
PROP
}
Φ
n
X
:
▷^
n
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
set
]
y
∈
X
,
▷^
n
Φ
y
)
.
Proof
.
apply
(
big_opS_commute
_)
.
Qed
.
Lemma
big_sepS_laterN_2
Φ
n
X
:
([
∗
set
]
y
∈
X
,
▷^
n
Φ
y
)
⊢
▷^
n
([
∗
set
]
y
∈
X
,
Φ
y
)
.
Proof
.
by
rewrite
big_opS_commute
.
Qed
.
Global
Instance
big_sepS_empty_persistent
Φ
:
Global
Instance
big_sepS_empty_persistent
Φ
:
Persistent
([
∗
set
]
x
∈
∅
,
Φ
x
)
.
Persistent
([
∗
set
]
x
∈
∅
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
elements_empty
.
apply
_
.
Qed
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
elements_empty
.
apply
_
.
Qed
.
...
@@ -1464,6 +1600,13 @@ Section gset.
...
@@ -1464,6 +1600,13 @@ Section gset.
Global
Instance
big_sepS_affine
Φ
X
:
Global
Instance
big_sepS_affine
Φ
X
:
(
∀
x
,
Affine
(
Φ
x
))
→
Affine
([
∗
set
]
x
∈
X
,
Φ
x
)
.
(
∀
x
,
Affine
(
Φ
x
))
→
Affine
([
∗
set
]
x
∈
X
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
.
apply
_
.
Qed
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
.
apply
_
.
Qed
.
Global
Instance
big_sepS_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
set
]
x
∈
∅
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
elements_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepS_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
X
:
(
∀
x
,
Timeless
(
Φ
x
))
→
Timeless
([
∗
set
]
x
∈
X
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
.
apply
_
.
Qed
.
End
gset
.
End
gset
.
Lemma
big_sepM_dom
`{
Countable
K
}
{
A
}
(
Φ
:
K
→
PROP
)
(
m
:
gmap
K
A
)
:
Lemma
big_sepM_dom
`{
Countable
K
}
{
A
}
(
Φ
:
K
→
PROP
)
(
m
:
gmap
K
A
)
:
...
@@ -1536,6 +1679,20 @@ Section gmultiset.
...
@@ -1536,6 +1679,20 @@ Section gmultiset.
([
∗
mset
]
y
∈
X
,
Φ
y
∧
Ψ
y
)
⊢
([
∗
mset
]
y
∈
X
,
Φ
y
)
∧
([
∗
mset
]
y
∈
X
,
Ψ
y
)
.
([
∗
mset
]
y
∈
X
,
Φ
y
∧
Ψ
y
)
⊢
([
∗
mset
]
y
∈
X
,
Φ
y
)
∧
([
∗
mset
]
y
∈
X
,
Ψ
y
)
.
Proof
.
auto
using
and_intro
,
big_sepMS_mono
,
and_elim_l
,
and_elim_r
.
Qed
.
Proof
.
auto
using
and_intro
,
big_sepMS_mono
,
and_elim_l
,
and_elim_r
.
Qed
.
Lemma
big_sepMS_later
`{
BiAffine
PROP
}
Φ
X
:
▷
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
mset
]
y
∈
X
,
▷
Φ
y
)
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
Lemma
big_sepMS_later_2
Φ
X
:
([
∗
mset
]
y
∈
X
,
▷
Φ
y
)
⊢
▷
[
∗
mset
]
y
∈
X
,
Φ
y
.
Proof
.
by
rewrite
big_opMS_commute
.
Qed
.
Lemma
big_sepMS_laterN
`{
BiAffine
PROP
}
Φ
n
X
:
▷^
n
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
mset
]
y
∈
X
,
▷^
n
Φ
y
)
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
Lemma
big_sepMS_laterN_2
Φ
n
X
:
([
∗
mset
]
y
∈
X
,
▷^
n
Φ
y
)
⊢
▷^
n
[
∗
mset
]
y
∈
X
,
Φ
y
.
Proof
.
by
rewrite
big_opMS_commute
.
Qed
.
Lemma
big_sepMS_persistently
`{
BiAffine
PROP
}
Φ
X
:
Lemma
big_sepMS_persistently
`{
BiAffine
PROP
}
Φ
X
:
<
pers
>
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
[
∗
mset
]
y
∈
X
,
<
pers
>
(
Φ
y
)
.
<
pers
>
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
[
∗
mset
]
y
∈
X
,
<
pers
>
(
Φ
y
)
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
...
@@ -1552,208 +1709,6 @@ Section gmultiset.
...
@@ -1552,208 +1709,6 @@ Section gmultiset.
Global
Instance
big_sepMS_affine
Φ
X
:
Global
Instance
big_sepMS_affine
Φ
X
:
(
∀
x
,
Affine
(
Φ
x
))
→
Affine
([
∗
mset
]
x
∈
X
,
Φ
x
)
.
(
∀
x
,
Affine
(
Φ
x
))
→
Affine
([
∗
mset
]
x
∈
X
,
Φ
x
)
.
Proof
.
rewrite
big_opMS_eq
/
big_opMS_def
.
apply
_
.
Qed
.
Proof
.
rewrite
big_opMS_eq
/
big_opMS_def
.
apply
_
.
Qed
.
End
gmultiset
.
End
bi_big_op
.
(** * Properties for step-indexed BIs*)
Section
sbi_big_op
.
Context
{
PROP
:
bi
}
.
Implicit
Types
Ps
Qs
:
list
PROP
.
Implicit
Types
A
:
Type
.
(** ** Big ops over lists *)
Section
list
.
Context
{
A
:
Type
}
.
Implicit
Types
l
:
list
A
.
Implicit
Types
Φ
Ψ
:
nat
→
A
→
PROP
.
Lemma
big_sepL_later
`{
BiAffine
PROP
}
Φ
l
:
▷
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
∗
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_later_2
Φ
l
:
([
∗
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
⊢
▷
[
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
.
Proof
.
by
rewrite
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_laterN
`{
BiAffine
PROP
}
Φ
n
l
:
▷^
n
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
∗
list
]
k
↦
x
∈
l
,
▷^
n
Φ
k
x
)
.
Proof
.
apply
(
big_opL_commute
_)
.
Qed
.
Lemma
big_sepL_laterN_2
Φ
n
l
:
([
∗
list
]
k
↦
x
∈
l
,
▷^
n
Φ
k
x
)
⊢
▷^
n
[
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
.
Proof
.
by
rewrite
(
big_opL_commute
_)
.
Qed
.
Global
Instance
big_sepL_nil_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
list
]
k
↦
x
∈
[],
Φ
k
x
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
l
:
(
∀
k
x
,
Timeless
(
Φ
k
x
))
→
Timeless
([
∗
list
]
k
↦
x
∈
l
,
Φ
k
x
)
.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
?
/=
;
apply
_
.
Qed
.
Global
Instance
big_sepL_timeless_id
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Ps
:
TCForall
Timeless
Ps
→
Timeless
([
∗
]
Ps
)
.
Proof
.
induction
1
;
simpl
;
apply
_
.
Qed
.
End
list
.
Section
list2
.
Context
{
A
B
:
Type
}
.
Implicit
Types
Φ
Ψ
:
nat
→
A
→
B
→
PROP
.
Lemma
big_sepL2_later_1
`{
BiAffine
PROP
}
Φ
l1
l2
:
(
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
⊢
◇
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
later_and
big_sepL_later
(
timeless
⌜
_
⌝%
I
)
.
rewrite
except_0_and
.
auto
using
and_mono
,
except_0_intro
.
Qed
.
Lemma
big_sepL2_later_2
Φ
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷
Φ
k
y1
y2
)
⊢
▷
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
later_and
big_sepL_later_2
.
auto
using
and_mono
,
later_intro
.
Qed
.
Lemma
big_sepL2_laterN_2
Φ
n
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
▷^
n
Φ
k
y1
y2
)
⊢
▷^
n
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
.
Proof
.
rewrite
!
big_sepL2_alt
laterN_and
big_sepL_laterN_2
.
auto
using
and_mono
,
laterN_intro
.
Qed
.
Lemma
big_sepL2_flip
Φ
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l2
;
l1
,
Φ
k
y2
y1
)
⊣⊢
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Proof
.
revert
Φ
l2
.
induction
l1
as
[|
x1
l1
IH
]=>
Φ
-
[|
x2
l2
]
//=
;
simplify_eq
.
by
rewrite
IH
.
Qed
.
Global
Instance
big_sepL2_nil_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
list
]
k
↦
y1
;
y2
∈
[];
[],
Φ
k
y1
y2
)
.
Proof
.
simpl
;
apply
_
.
Qed
.
Global
Instance
big_sepL2_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
l1
l2
:
(
∀
k
x1
x2
,
Timeless
(
Φ
k
x1
x2
))
→
Timeless
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepL2_alt
.
apply
_
.
Qed
.
End
list2
.
(** ** Big ops over finite maps *)
Section
gmap
.
Context
`{
Countable
K
}
{
A
:
Type
}
.
Implicit
Types
m
:
gmap
K
A
.
Implicit
Types
Φ
Ψ
:
K
→
A
→
PROP
.
Lemma
big_sepM_later
`{
BiAffine
PROP
}
Φ
m
:
▷
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_opM_commute
_)
.
Qed
.
Lemma
big_sepM_later_2
Φ
m
:
([
∗
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
⊢
▷
[
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
.
Proof
.
by
rewrite
big_opM_commute
.
Qed
.
Lemma
big_sepM_laterN
`{
BiAffine
PROP
}
Φ
n
m
:
▷^
n
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
▷^
n
Φ
k
x
)
.
Proof
.
apply
(
big_opM_commute
_)
.
Qed
.
Lemma
big_sepM_laterN_2
Φ
n
m
:
([
∗
map
]
k
↦
x
∈
m
,
▷^
n
Φ
k
x
)
⊢
▷^
n
[
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
.
Proof
.
by
rewrite
big_opM_commute
.
Qed
.
Global
Instance
big_sepM_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
map
]
k
↦
x
∈
∅
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
/
big_opM_def
map_to_list_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepM_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
m
:
(
∀
k
x
,
Timeless
(
Φ
k
x
))
→
Timeless
([
∗
map
]
k
↦
x
∈
m
,
Φ
k
x
)
.
Proof
.
rewrite
big_opM_eq
.
intros
.
apply
big_sepL_timeless
=>
_
[??];
apply
_
.
Qed
.
End
gmap
.
Section
gmap2
.
Context
`{
Countable
K
}
{
A
B
:
Type
}
.
Implicit
Types
Φ
Ψ
:
K
→
A
→
B
→
PROP
.
Lemma
big_sepM2_later_1
`{
BiAffine
PROP
}
Φ
m1
m2
:
(
▷
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
)
⊢
◇
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷
Φ
k
x1
x2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
later_and
(
timeless
⌜_⌝%
I
)
.
rewrite
big_sepM_later
except_0_and
.
auto
using
and_mono_r
,
except_0_intro
.
Qed
.
Lemma
big_sepM2_later_2
Φ
m1
m2
:
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷
Φ
k
x1
x2
)
⊢
▷
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
later_and
-
(
later_intro
⌜_⌝%
I
)
.
apply
and_mono_r
.
by
rewrite
big_opM_commute
.
Qed
.
Lemma
big_sepM2_laterN_2
Φ
n
m1
m2
:
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
▷^
n
Φ
k
x1
x2
)
⊢
▷^
n
[
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
.
Proof
.
induction
n
as
[|
n
IHn
];
first
done
.
rewrite
later_laterN
-
IHn
-
big_sepM2_later_2
.
apply
big_sepM2_mono
.
eauto
.
Qed
.
Lemma
big_sepM2_flip
Φ
m1
m2
:
([
∗
map
]
k
↦
y1
;
y2
∈
m2
;
m1
,
Φ
k
y2
y1
)
⊣⊢
([
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
and_proper
;
[
apply
pure_proper
;
naive_solver
|]
.
rewrite
-
map_zip_with_flip
map_zip_with_map_zip
big_sepM_fmap
.
apply
big_sepM_proper
.
by
intros
k
[
b
a
]
.
Qed
.
Global
Instance
big_sepM2_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
map
]
k
↦
x1
;
x2
∈
∅
;
∅
,
Φ
k
x1
x2
)
.
Proof
.
rewrite
big_sepM2_eq
/
big_sepM2_def
map_zip_with_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepM2_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
m1
m2
:
(
∀
k
x1
x2
,
Timeless
(
Φ
k
x1
x2
))
→
Timeless
([
∗
map
]
k
↦
x1
;
x2
∈
m1
;
m2
,
Φ
k
x1
x2
)
.
Proof
.
intros
.
rewrite
big_sepM2_eq
/
big_sepM2_def
.
apply
_
.
Qed
.
End
gmap2
.
(** ** Big ops over finite sets *)
Section
gset
.
Context
`{
Countable
A
}
.
Implicit
Types
X
:
gset
A
.
Implicit
Types
Φ
:
A
→
PROP
.
Lemma
big_sepS_later
`{
BiAffine
PROP
}
Φ
X
:
▷
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
set
]
y
∈
X
,
▷
Φ
y
)
.
Proof
.
apply
(
big_opS_commute
_)
.
Qed
.
Lemma
big_sepS_later_2
Φ
X
:
([
∗
set
]
y
∈
X
,
▷
Φ
y
)
⊢
▷
([
∗
set
]
y
∈
X
,
Φ
y
)
.
Proof
.
by
rewrite
big_opS_commute
.
Qed
.
Lemma
big_sepS_laterN
`{
BiAffine
PROP
}
Φ
n
X
:
▷^
n
([
∗
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
set
]
y
∈
X
,
▷^
n
Φ
y
)
.
Proof
.
apply
(
big_opS_commute
_)
.
Qed
.
Lemma
big_sepS_laterN_2
Φ
n
X
:
([
∗
set
]
y
∈
X
,
▷^
n
Φ
y
)
⊢
▷^
n
([
∗
set
]
y
∈
X
,
Φ
y
)
.
Proof
.
by
rewrite
big_opS_commute
.
Qed
.
Global
Instance
big_sepS_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
set
]
x
∈
∅
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
elements_empty
.
apply
_
.
Qed
.
Global
Instance
big_sepS_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
X
:
(
∀
x
,
Timeless
(
Φ
x
))
→
Timeless
([
∗
set
]
x
∈
X
,
Φ
x
)
.
Proof
.
rewrite
big_opS_eq
/
big_opS_def
.
apply
_
.
Qed
.
End
gset
.
(** ** Big ops over finite multisets *)
Section
gmultiset
.
Context
`{
Countable
A
}
.
Implicit
Types
X
:
gmultiset
A
.
Implicit
Types
Φ
:
A
→
PROP
.
Lemma
big_sepMS_later
`{
BiAffine
PROP
}
Φ
X
:
▷
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
mset
]
y
∈
X
,
▷
Φ
y
)
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
Lemma
big_sepMS_later_2
Φ
X
:
([
∗
mset
]
y
∈
X
,
▷
Φ
y
)
⊢
▷
[
∗
mset
]
y
∈
X
,
Φ
y
.
Proof
.
by
rewrite
big_opMS_commute
.
Qed
.
Lemma
big_sepMS_laterN
`{
BiAffine
PROP
}
Φ
n
X
:
▷^
n
([
∗
mset
]
y
∈
X
,
Φ
y
)
⊣⊢
([
∗
mset
]
y
∈
X
,
▷^
n
Φ
y
)
.
Proof
.
apply
(
big_opMS_commute
_)
.
Qed
.
Lemma
big_sepMS_laterN_2
Φ
n
X
:
([
∗
mset
]
y
∈
X
,
▷^
n
Φ
y
)
⊢
▷^
n
[
∗
mset
]
y
∈
X
,
Φ
y
.
Proof
.
by
rewrite
big_opMS_commute
.
Qed
.
Global
Instance
big_sepMS_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Global
Instance
big_sepMS_empty_timeless
`{
!
Timeless
(
emp
%
I
:
PROP
)}
Φ
:
Timeless
([
∗
mset
]
x
∈
∅
,
Φ
x
)
.
Timeless
([
∗
mset
]
x
∈
∅
,
Φ
x
)
.
...
@@ -1762,4 +1717,4 @@ Section gmultiset.
...
@@ -1762,4 +1717,4 @@ Section gmultiset.
(
∀
x
,
Timeless
(
Φ
x
))
→
Timeless
([
∗
mset
]
x
∈
X
,
Φ
x
)
.
(
∀
x
,
Timeless
(
Φ
x
))
→
Timeless
([
∗
mset
]
x
∈
X
,
Φ
x
)
.
Proof
.
rewrite
big_opMS_eq
/
big_opMS_def
.
apply
_
.
Qed
.
Proof
.
rewrite
big_opMS_eq
/
big_opMS_def
.
apply
_
.
Qed
.
End
gmultiset
.
End
gmultiset
.
End
sbi_
big_op
.
End
big_op
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment