Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
754c71b8
Commit
754c71b8
authored
5 years ago
by
Simon Spies
Committed by
Ralf Jung
5 years ago
Browse files
Options
Downloads
Patches
Plain Diff
semantic invariants
parent
4ae66d43
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/base_logic/lib/invariants.v
+174
-108
174 additions, 108 deletions
theories/base_logic/lib/invariants.v
with
174 additions
and
108 deletions
theories/base_logic/lib/invariants.v
+
174
−
108
View file @
754c71b8
...
...
@@ -6,40 +6,6 @@ From iris.base_logic.lib Require Import wsat.
Set
Default
Proof
Using
"Type"
.
Import
uPred
.
(** Derived forms and lemmas about them. *)
Definition
inv_def
`{
!
invG
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
i
P'
,
⌜
i
∈
(
↑
N
:
coPset
)
⌝
∧
▷
□
(
P'
↔
P
)
∧
ownI
i
P'
)
%
I
.
Definition
inv_aux
:
seal
(
@
inv_def
)
.
by
eexists
.
Qed
.
Definition
inv
{
Σ
i
}
:=
inv_aux
.(
unseal
)
Σ
i
.
Definition
inv_eq
:
@
inv
=
@
inv_def
:=
inv_aux
.(
seal_eq
)
.
Instance
:
Params
(
@
inv
)
3
:=
{}
.
Typeclasses
Opaque
inv
.
Section
inv
.
Context
`{
!
invG
Σ
}
.
Implicit
Types
i
:
positive
.
Implicit
Types
N
:
namespace
.
Implicit
Types
P
Q
R
:
iProp
Σ
.
Global
Instance
inv_contractive
N
:
Contractive
(
inv
N
)
.
Proof
.
rewrite
inv_eq
.
solve_contractive
.
Qed
.
Global
Instance
inv_ne
N
:
NonExpansive
(
inv
N
)
.
Proof
.
apply
contractive_ne
,
_
.
Qed
.
Global
Instance
inv_proper
N
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
inv
N
)
.
Proof
.
apply
ne_proper
,
_
.
Qed
.
Global
Instance
inv_persistent
N
P
:
Persistent
(
inv
N
P
)
.
Proof
.
rewrite
inv_eq
/
inv
;
apply
_
.
Qed
.
Lemma
inv_iff
N
P
Q
:
▷
□
(
P
↔
Q
)
-∗
inv
N
P
-∗
inv
N
Q
.
Proof
.
iIntros
"#HPQ"
.
rewrite
inv_eq
.
iDestruct
1
as
(
i
P'
)
"(?&#HP&?)"
.
iExists
i
,
P'
.
iFrame
.
iNext
;
iAlways
;
iSplit
.
-
iIntros
"HP'"
.
iApply
"HPQ"
.
by
iApply
"HP"
.
-
iIntros
"HQ"
.
iApply
"HP"
.
by
iApply
"HPQ"
.
Qed
.
Lemma
fresh_inv_name
(
E
:
gset
positive
)
N
:
∃
i
,
i
∉
E
∧
i
∈
(
↑
N
:
coPset
)
.
Proof
.
...
...
@@ -50,79 +16,179 @@ Proof.
apply
gset_to_coPset_finite
.
Qed
.
Lemma
inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
inv
N
P
.
Proof
.
rewrite
inv_eq
/
inv_def
uPred_fupd_eq
.
iIntros
"HP [Hw $]"
.
iMod
(
ownI_alloc
(.
∈
(
↑
N
:
coPset
))
P
with
"[$HP $Hw]"
)
as
(
i
?)
"[$ ?]"
;
auto
using
fresh_inv_name
.
do
2
iModIntro
.
iExists
i
,
P
.
rewrite
-
(
iff_refl
True
%
I
)
.
auto
.
Qed
.
Lemma
inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Proof
.
rewrite
inv_eq
/
inv_def
uPred_fupd_eq
.
iIntros
(
Sub
)
"[Hw HE]"
.
iMod
(
ownI_alloc_open
(.
∈
(
↑
N
:
coPset
))
P
with
"Hw"
)
as
(
i
?)
"(Hw & #Hi & HD)"
;
auto
using
fresh_inv_name
.
iAssert
(
ownE
{[
i
]}
∗
ownE
(
↑
N
∖
{[
i
]})
∗
ownE
(
E
∖
↑
N
))
%
I
with
"[HE]"
as
"(HEi & HEN\i & HE\N)"
.
{
rewrite
-
?ownE_op
;
[|
set_solver
..]
.
rewrite
assoc_L
-!
union_difference_L
//.
set_solver
.
}
do
2
iModIntro
.
iFrame
"HE\N"
.
iSplitL
"Hw HEi"
;
first
by
iApply
"Hw"
.
iSplitL
"Hi"
.
{
iExists
i
,
P
.
rewrite
-
(
iff_refl
True
%
I
)
.
auto
.
}
iIntros
"HP [Hw HE\N]"
.
iDestruct
(
ownI_close
with
"[$Hw $Hi $HP $HD]"
)
as
"[$ HEi]"
.
do
2
iModIntro
.
iSplitL
;
[|
done
]
.
iCombine
"HEi HEN\i HE\N"
as
"HEN"
.
rewrite
-
?ownE_op
;
[|
set_solver
..]
.
rewrite
assoc_L
-!
union_difference_L
//
;
set_solver
.
Qed
.
Lemma
inv_open
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
rewrite
inv_eq
/
inv_def
uPred_fupd_eq
/
uPred_fupd_def
.
iDestruct
1
as
(
i
P'
)
"(Hi & #HP' & #HiP)"
.
iDestruct
"Hi"
as
%
?
%
elem_of_subseteq_singleton
.
rewrite
{
1
4
}(
union_difference_L
(
↑
N
)
E
)
//
ownE_op
;
last
set_solver
.
rewrite
{
1
5
}(
union_difference_L
{[
i
]}
(
↑
N
))
//
ownE_op
;
last
set_solver
.
iIntros
"(Hw & [HE $] & $) !> !>"
.
iDestruct
(
ownI_open
i
with
"[$Hw $HE $HiP]"
)
as
"($ & HP & HD)"
.
iDestruct
(
"HP'"
with
"HP"
)
as
"$"
.
iIntros
"HP [Hw $] !> !>"
.
iApply
(
ownI_close
_
P'
)
.
iFrame
"HD Hw HiP"
.
iApply
"HP'"
.
iFrame
.
Qed
.
Lemma
inv_open_strong
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
∀
E'
,
▷
P
=
{
E'
,
↑
N
∪
E'
}
=∗
True
.
Proof
.
iIntros
(?)
"Hinv"
.
iPoseProof
(
inv_open
(
↑
N
)
N
P
with
"Hinv"
)
as
"H"
;
first
done
.
rewrite
difference_diag_L
.
iPoseProof
(
fupd_mask_frame_r
_
_
(
E
∖
↑
N
)
with
"H"
)
as
"H"
;
first
set_solver
.
rewrite
left_id_L
-
union_difference_L
//.
iMod
"H"
as
"[$ H]"
;
iModIntro
.
iIntros
(
E'
)
"HP"
.
iPoseProof
(
fupd_mask_frame_r
_
_
E'
with
"(H HP)"
)
as
"H"
;
first
set_solver
.
by
rewrite
left_id_L
.
Qed
.
Global
Instance
into_inv_inv
N
P
:
IntoInv
(
inv
N
P
)
N
:=
{}
.
Global
Instance
into_acc_inv
E
N
P
:
IntoAcc
(
X
:=
unit
)
(
inv
N
P
)
(
↑
N
⊆
E
)
True
(
fupd
E
(
E
∖↑
N
))
(
fupd
(
E
∖↑
N
)
E
)
(
λ
_,
▷
P
)
%
I
(
λ
_,
▷
P
)
%
I
(
λ
_,
None
)
%
I
.
Proof
.
rewrite
/
IntoAcc
/
accessor
exist_unit
.
iIntros
(?)
"#Hinv _"
.
iApply
inv_open
;
done
.
Qed
.
Lemma
inv_open_timeless
E
N
P
`{
!
Timeless
P
}
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
P
∗
(
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
iIntros
(?)
"Hinv"
.
iMod
(
inv_open
with
"Hinv"
)
as
"[>HP Hclose]"
;
auto
.
iIntros
"!> {$HP} HP"
.
iApply
"Hclose"
;
auto
.
Qed
.
(** * Invariants *)
Section
inv
.
Context
`{
!
invG
Σ
}
.
(** Internal backing store of invariants *)
Definition
internal_inv_def
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
i
P'
,
⌜
i
∈
(
↑
N
:
coPset
)
⌝
∧
▷
□
(
P'
↔
P
)
∧
ownI
i
P'
)
%
I
.
Definition
internal_inv_aux
:
seal
(
@
internal_inv_def
)
.
by
eexists
.
Qed
.
Definition
internal_inv
:=
internal_inv_aux
.(
unseal
)
.
Definition
internal_inv_eq
:
@
internal_inv
=
@
internal_inv_def
:=
internal_inv_aux
.(
seal_eq
)
.
Typeclasses
Opaque
internal_inv
.
Global
Instance
internal_inv_persistent
N
P
:
Persistent
(
internal_inv
N
P
)
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv
;
apply
_
.
Qed
.
Lemma
internal_inv_open
E
N
P
:
↑
N
⊆
E
→
internal_inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
/
uPred_fupd_def
.
iDestruct
1
as
(
i
P'
)
"(Hi & #HP' & #HiP)"
.
iDestruct
"Hi"
as
%
?
%
elem_of_subseteq_singleton
.
rewrite
{
1
4
}(
union_difference_L
(
↑
N
)
E
)
//
ownE_op
;
last
set_solver
.
rewrite
{
1
5
}(
union_difference_L
{[
i
]}
(
↑
N
))
//
ownE_op
;
last
set_solver
.
iIntros
"(Hw & [HE $] & $) !> !>"
.
iDestruct
(
ownI_open
i
with
"[$Hw $HE $HiP]"
)
as
"($ & HP & HD)"
.
iDestruct
(
"HP'"
with
"HP"
)
as
"$"
.
iIntros
"HP [Hw $] !> !>"
.
iApply
(
ownI_close
_
P'
)
.
iFrame
"HD Hw HiP"
.
iApply
"HP'"
.
iFrame
.
Qed
.
Lemma
internal_inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
internal_inv
N
P
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
.
iIntros
"HP [Hw $]"
.
iMod
(
ownI_alloc
(.
∈
(
↑
N
:
coPset
))
P
with
"[$HP $Hw]"
)
as
(
i
?)
"[$ ?]"
;
auto
using
fresh_inv_name
.
do
2
iModIntro
.
iExists
i
,
P
.
rewrite
-
(
iff_refl
True
%
I
)
.
auto
.
Qed
.
Lemma
internal_inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
internal_inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
.
iIntros
(
Sub
)
"[Hw HE]"
.
iMod
(
ownI_alloc_open
(.
∈
(
↑
N
:
coPset
))
P
with
"Hw"
)
as
(
i
?)
"(Hw & #Hi & HD)"
;
auto
using
fresh_inv_name
.
iAssert
(
ownE
{[
i
]}
∗
ownE
(
↑
N
∖
{[
i
]})
∗
ownE
(
E
∖
↑
N
))
%
I
with
"[HE]"
as
"(HEi & HEN\i & HE\N)"
.
{
rewrite
-
?ownE_op
;
[|
set_solver
..]
.
rewrite
assoc_L
-!
union_difference_L
//.
set_solver
.
}
do
2
iModIntro
.
iFrame
"HE\N"
.
iSplitL
"Hw HEi"
;
first
by
iApply
"Hw"
.
iSplitL
"Hi"
.
{
iExists
i
,
P
.
rewrite
-
(
iff_refl
True
%
I
)
.
auto
.
}
iIntros
"HP [Hw HE\N]"
.
iDestruct
(
ownI_close
with
"[$Hw $Hi $HP $HD]"
)
as
"[$ HEi]"
.
do
2
iModIntro
.
iSplitL
;
[|
done
]
.
iCombine
"HEi HEN\i HE\N"
as
"HEN"
.
rewrite
-
?ownE_op
;
[|
set_solver
..]
.
rewrite
assoc_L
-!
union_difference_L
//
;
set_solver
.
Qed
.
(** Invariants API *)
Definition
inv_def
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
□
(
∀
E
,
⌜↑
N
⊆
E
⌝
→
|
=
{
E
,
E
∖
↑
N
}=>
▷
P
∗
(
▷
P
=
{
E
∖
↑
N
,
E
}
=∗
True
)))
%
I
.
Definition
inv_aux
:
seal
(
@
inv_def
)
.
by
eexists
.
Qed
.
Definition
inv
:=
inv_aux
.(
unseal
)
.
Definition
inv_eq
:
@
inv
=
@
inv_def
:=
inv_aux
.(
seal_eq
)
.
Typeclasses
Opaque
inv
.
(** Properties about invariants *)
Global
Instance
inv_contractive
N
:
Contractive
(
inv
N
)
.
Proof
.
rewrite
inv_eq
.
solve_contractive
.
Qed
.
Global
Instance
inv_ne
N
:
NonExpansive
(
inv
N
)
.
Proof
.
apply
contractive_ne
,
_
.
Qed
.
Global
Instance
inv_proper
N
:
Proper
(
equiv
==>
equiv
)
(
inv
N
)
.
Proof
.
apply
ne_proper
,
_
.
Qed
.
Global
Instance
inv_persistent
M
P
:
Persistent
(
inv
M
P
)
.
Proof
.
rewrite
inv_eq
.
typeclasses
eauto
.
Qed
.
Lemma
inv_acc
N
P
Q
:
inv
N
P
-∗
▷
□
(
P
-∗
Q
∗
(
Q
-∗
P
))
-∗
inv
N
Q
.
Proof
.
iIntros
"#I #Acc"
.
rewrite
inv_eq
.
iModIntro
.
iIntros
(
E
H
)
.
iDestruct
(
"I"
$!
E
H
)
as
"#I'"
.
iApply
fupd_wand_r
.
iFrame
"I'"
.
iIntros
"(P & Hclose)"
.
iSpecialize
(
"Acc"
with
"P"
)
.
iDestruct
"Acc"
as
"[Q CB]"
.
iFrame
.
iIntros
"Q"
.
iApply
"Hclose"
.
now
iApply
"CB"
.
Qed
.
Lemma
inv_iff
N
P
Q
:
▷
□
(
P
↔
Q
)
-∗
inv
N
P
-∗
inv
N
Q
.
Proof
.
iIntros
"#HPQ #I"
.
iApply
(
inv_acc
with
"I"
)
.
iNext
.
iIntros
"!# P"
.
iSplitL
"P"
.
-
by
iApply
"HPQ"
.
-
iIntros
"Q"
.
by
iApply
"HPQ"
.
Qed
.
Lemma
inv_to_inv
M
P
:
internal_inv
M
P
-∗
inv
M
P
.
Proof
.
iIntros
"#I"
.
rewrite
inv_eq
.
iIntros
(
E
H
)
.
iPoseProof
(
internal_inv_open
with
"I"
)
as
"H"
;
eauto
.
Qed
.
Lemma
inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
inv
N
P
.
Proof
.
iIntros
"P"
.
iPoseProof
(
internal_inv_alloc
N
E
with
"P"
)
as
"I"
.
iApply
fupd_mono
;
last
eauto
.
iApply
inv_to_inv
.
Qed
.
Lemma
inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Proof
.
iIntros
(
H
)
.
iPoseProof
(
internal_inv_alloc_open
_
_
_
H
)
as
"H"
.
iApply
fupd_mono
;
last
eauto
.
iIntros
"[I H]"
;
iFrame
;
by
iApply
inv_to_inv
.
Qed
.
Lemma
inv_open
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
rewrite
inv_eq
/
inv_def
;
iIntros
(
H
)
"#I"
.
by
iApply
"I"
.
Qed
.
Lemma
inv_open_strong
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
∀
E'
,
▷
P
=
{
E'
,
↑
N
∪
E'
}
=∗
True
.
Proof
.
iIntros
(?)
"Hinv"
.
iPoseProof
(
inv_open
(
↑
N
)
N
P
with
"Hinv"
)
as
"H"
;
first
done
.
rewrite
difference_diag_L
.
iPoseProof
(
fupd_mask_frame_r
_
_
(
E
∖
↑
N
)
with
"H"
)
as
"H"
;
first
set_solver
.
rewrite
left_id_L
-
union_difference_L
//.
iMod
"H"
as
"[$ H]"
;
iModIntro
.
iIntros
(
E'
)
"HP"
.
iPoseProof
(
fupd_mask_frame_r
_
_
E'
with
"(H HP)"
)
as
"H"
;
first
set_solver
.
by
rewrite
left_id_L
.
Qed
.
Global
Instance
into_inv_inv
N
P
:
IntoInv
(
inv
N
P
)
N
:=
{}
.
Global
Instance
into_acc_inv
N
P
E
:
IntoAcc
(
X
:=
unit
)
(
inv
N
P
)
(
↑
N
⊆
E
)
True
(
fupd
E
(
E
∖
↑
N
))
(
fupd
(
E
∖
↑
N
)
E
)
(
λ
_
:
(),
(
▷
P
)
%
I
)
(
λ
_
:
(),
(
▷
P
)
%
I
)
(
λ
_
:
(),
None
)
.
Proof
.
rewrite
inv_eq
/
IntoAcc
/
accessor
bi
.
exist_unit
.
iIntros
(?)
"#Hinv _"
.
iApply
"Hinv"
;
done
.
Qed
.
Lemma
inv_open_timeless
E
N
P
`{
!
Timeless
P
}
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
P
∗
(
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
iIntros
(?)
"Hinv"
.
iMod
(
inv_open
with
"Hinv"
)
as
"[>HP Hclose]"
;
auto
.
iIntros
"!> {$HP} HP"
.
iApply
"Hclose"
;
auto
.
Qed
.
(* Weakening of semantic invariants *)
Lemma
inv_proj_l
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
.
Proof
.
iIntros
"#I"
.
iApply
inv_acc
;
eauto
.
iNext
.
iIntros
"!# [$ Q] P"
;
iFrame
.
Qed
.
Lemma
inv_proj_r
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
Q
.
Proof
.
rewrite
(
bi
.
sep_comm
P
Q
)
.
eapply
inv_proj_l
.
Qed
.
Lemma
inv_split
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
∗
inv
N
Q
.
Proof
.
iIntros
"#H"
.
iPoseProof
(
inv_proj_l
with
"H"
)
as
"$"
.
iPoseProof
(
inv_proj_r
with
"H"
)
as
"$"
.
Qed
.
End
inv
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment