Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
62d3e6cb
Commit
62d3e6cb
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Replace some occurences of `eq` by `(=)`.
parent
79086c8a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/algebra/big_op.v
+9
-9
9 additions, 9 deletions
theories/algebra/big_op.v
with
9 additions
and
9 deletions
theories/algebra/big_op.v
+
9
−
9
View file @
62d3e6cb
...
...
@@ -132,11 +132,11 @@ Section list.
Proof
.
intros
xs1
xs2
.
apply
big_opL_permutation
.
Qed
.
Global
Instance
big_opL_ne
n
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
dist
n
))
==>
eq
==>
dist
n
)
(
big_opL
o
(
A
:=
A
))
.
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
dist
n
))
==>
(
=
)
==>
dist
n
)
(
big_opL
o
(
A
:=
A
))
.
Proof
.
intros
f
f'
Hf
l
?
<-.
apply
big_opL_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_opL_proper'
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
≡
))
==>
eq
==>
(
≡
))
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
≡
))
==>
(
=
)
==>
(
≡
))
(
big_opL
o
(
A
:=
A
))
.
Proof
.
intros
f
f'
Hf
l
?
<-.
apply
big_opL_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
...
...
@@ -191,11 +191,11 @@ Section gmap.
Proof
.
apply
big_opM_forall
;
apply
_
.
Qed
.
Global
Instance
big_opM_ne
n
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
dist
n
))
==>
eq
==>
dist
n
)
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
dist
n
))
==>
(
=
)
==>
dist
n
)
(
big_opM
o
(
K
:=
K
)
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opM_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_opM_proper'
:
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
≡
))
==>
eq
==>
(
≡
))
Proper
(
pointwise_relation
_
(
pointwise_relation
_
(
≡
))
==>
(
=
)
==>
(
≡
))
(
big_opM
o
(
K
:=
K
)
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opM_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
...
...
@@ -297,10 +297,10 @@ Section gset.
Proof
.
apply
big_opS_forall
;
apply
_
.
Qed
.
Global
Instance
big_opS_ne
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
eq
==>
dist
n
)
(
big_opS
o
(
A
:=
A
))
.
Proper
(
pointwise_relation
_
(
dist
n
)
==>
(
=
)
==>
dist
n
)
(
big_opS
o
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_opS_proper'
:
Proper
(
pointwise_relation
_
(
≡
)
==>
eq
==>
(
≡
))
(
big_opS
o
(
A
:=
A
))
.
Proper
(
pointwise_relation
_
(
≡
)
==>
(
=
)
==>
(
≡
))
(
big_opS
o
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opS_empty
f
:
([
^
o
set
]
x
∈
∅
,
f
x
)
=
monoid_unit
.
...
...
@@ -384,10 +384,10 @@ Section gmultiset.
Proof
.
apply
big_opMS_forall
;
apply
_
.
Qed
.
Global
Instance
big_opMS_ne
n
:
Proper
(
pointwise_relation
_
(
dist
n
)
==>
eq
==>
dist
n
)
(
big_opMS
o
(
A
:=
A
))
.
Proper
(
pointwise_relation
_
(
dist
n
)
==>
(
=
)
==>
dist
n
)
(
big_opMS
o
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Global
Instance
big_opMS_proper'
:
Proper
(
pointwise_relation
_
(
≡
)
==>
eq
==>
(
≡
))
(
big_opMS
o
(
A
:=
A
))
.
Proper
(
pointwise_relation
_
(
≡
)
==>
(
=
)
==>
(
≡
))
(
big_opMS
o
(
A
:=
A
))
.
Proof
.
intros
f
g
Hf
m
?
<-.
apply
big_opMS_forall
;
apply
_
||
intros
;
apply
Hf
.
Qed
.
Lemma
big_opMS_empty
f
:
([
^
o
mset
]
x
∈
∅
,
f
x
)
=
monoid_unit
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment