Skip to content
Snippets Groups Projects
Commit 62d3e6cb authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Replace some occurences of `eq` by `(=)`.

parent 79086c8a
No related branches found
No related tags found
No related merge requests found
......@@ -132,11 +132,11 @@ Section list.
Proof. intros xs1 xs2. apply big_opL_permutation. Qed.
Global Instance big_opL_ne n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==>
eq ==> dist n) (big_opL o (A:=A)).
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (=) ==> dist n)
(big_opL o (A:=A)).
Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opL_proper' :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
(big_opL o (A:=A)).
Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
......@@ -191,11 +191,11 @@ Section gmap.
Proof. apply big_opM_forall; apply _. Qed.
Global Instance big_opM_ne n :
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> eq ==> dist n)
Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> (=) ==> dist n)
(big_opM o (K:=K) (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opM_proper' :
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
(big_opM o (K:=K) (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
......@@ -297,10 +297,10 @@ Section gset.
Proof. apply big_opS_forall; apply _. Qed.
Global Instance big_opS_ne n :
Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opS o (A:=A)).
Proper (pointwise_relation _ (dist n) ==> (=) ==> dist n) (big_opS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opS_proper' :
Proper (pointwise_relation _ () ==> eq ==> ()) (big_opS o (A:=A)).
Proper (pointwise_relation _ () ==> (=) ==> ()) (big_opS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opS_empty f : ([^o set] x , f x) = monoid_unit.
......@@ -384,10 +384,10 @@ Section gmultiset.
Proof. apply big_opMS_forall; apply _. Qed.
Global Instance big_opMS_ne n :
Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opMS o (A:=A)).
Proper (pointwise_relation _ (dist n) ==> (=) ==> dist n) (big_opMS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
Global Instance big_opMS_proper' :
Proper (pointwise_relation _ () ==> eq ==> ()) (big_opMS o (A:=A)).
Proper (pointwise_relation _ () ==> (=) ==> ()) (big_opMS o (A:=A)).
Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
Lemma big_opMS_empty f : ([^o mset] x , f x) = monoid_unit.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment