Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
628ad2ad
Commit
628ad2ad
authored
4 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
tweaks
parent
6154f6f0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/base_logic/lib/ghost_map.v
+14
-13
14 additions, 13 deletions
iris/base_logic/lib/ghost_map.v
with
14 additions
and
13 deletions
iris/base_logic/lib/ghost_map.v
+
14
−
13
View file @
628ad2ad
...
...
@@ -175,7 +175,7 @@ Section lemmas.
Qed
.
(** * Lemmas about the interaction of [ghost_map_auth] with the elements *)
Lemma
ghost_map_lookup
k
γ
q
m
dq
v
:
Lemma
ghost_map_lookup
{
γ
q
m
k
dq
v
}
:
ghost_map_auth
γ
q
m
-∗
k
↪
[
γ
]{
dq
}
v
-∗
⌜
m
!!
k
=
Some
v
⌝.
Proof
.
unseal
.
iIntros
"Hauth Hel"
.
...
...
@@ -216,8 +216,8 @@ Section lemmas.
Qed
.
(** Derived big-op versions of above lemmas *)
Lemma
ghost_map_lookup_big
γ
m
m0
:
ghost_map_auth
γ
1
m
-∗
Lemma
ghost_map_lookup_big
{
γ
q
m
}
m0
:
ghost_map_auth
γ
q
m
-∗
([
∗
map
]
k
↦
v
∈
m0
,
k
↪
[
γ
]
v
)
-∗
⌜
m0
⊆
m
⌝.
Proof
.
...
...
@@ -234,9 +234,10 @@ Section lemmas.
ghost_map_auth
γ
1
m
==∗
ghost_map_auth
γ
1
(
m'
∪
m
)
∗
([
∗
map
]
k
↦
v
∈
m'
,
k
↪
[
γ
]
v
)
.
Proof
.
revert
m
;
induction
m'
as
[|
k
v
m'
Hk
IH
]
using
map_ind
;
iIntros
(
m
Hdisj
)
"Hm"
.
i
I
nduction
m'
as
[|
k
v
m'
Hk
]
"
IH
"
using
map_ind
forall
(
m
)
;
iIntros
(
Hdisj
)
"Hm"
.
{
rewrite
left_id_L
.
auto
.
}
iMod
(
IH
with
"Hm"
)
as
"[Hm'm Hm']"
;
first
by
eapply
map_disjoint_insert_l
.
iMod
(
"IH"
with
"[] Hm"
)
as
"[Hm'm Hm']"
.
{
iPureIntro
.
by
eapply
map_disjoint_insert_l
.
}
decompose_map_disjoint
.
rewrite
!
big_opM_insert
//
-
insert_union_l
//.
by
iMod
(
ghost_map_insert
with
"Hm'm"
)
as
"($ & $)"
;
...
...
@@ -253,27 +254,27 @@ Section lemmas.
iIntros
"!#"
(
k
v
)
"_"
.
iApply
ghost_map_elem_persist
.
Qed
.
Lemma
ghost_map_delete_big
{
γ
m
m0
}
:
Lemma
ghost_map_delete_big
{
γ
m
}
m0
:
ghost_map_auth
γ
1
m
-∗
([
∗
map
]
k
↦
v
∈
m0
,
k
↪
[
γ
]
v
)
-
∗
|
==>
ghost_map_auth
γ
1
(
m
∖
m0
)
.
([
∗
map
]
k
↦
v
∈
m0
,
k
↪
[
γ
]
v
)
==
∗
ghost_map_auth
γ
1
(
m
∖
m0
)
.
Proof
.
iInduction
m0
as
[|
k
v
m0
Hk
IH
]
"IH"
using
map_ind
.
{
iIntros
"Hauth _"
.
rewrite
right_id
//.
}
{
iIntros
"Hauth _"
.
rewrite
right_id
_L
//.
}
rewrite
big_sepM_insert
//.
iIntros
"Hauth [Helem Hm0]"
.
iMod
(
"IH"
with
"Hauth Hm0"
)
as
"Hauth"
.
iMod
(
ghost_map_delete
with
"Hauth Helem"
)
as
"Hauth"
.
rewrite
-
delete_difference
.
done
.
Qed
.
Theorem
ghost_map_update_big
{
γ
m
m0
}
m1
:
Theorem
ghost_map_update_big
{
γ
m
}
m0
m1
:
dom
(
gset
K
)
m0
=
dom
(
gset
K
)
m1
→
ghost_map_auth
γ
1
m
-∗
([
∗
map
]
k
↦
v
∈
m0
,
k
↪
[
γ
]
v
)
-
∗
|
==>
ghost_map_auth
γ
1
(
m1
∪
m
)
∗
([
∗
map
]
k
↦
v
∈
m0
,
k
↪
[
γ
]
v
)
==
∗
ghost_map_auth
γ
1
(
m1
∪
m
)
∗
[
∗
map
]
k
↦
v
∈
m1
,
k
↪
[
γ
]
v
.
Proof
.
iIntros
(
Hdom
)
"Hauth Hm0"
.
apply
(
comm
(
R
:=(
↔
))
(
=
))
in
Hdom
.
iIntros
(
Hdom
%
eq_sym
)
"Hauth Hm0"
.
iInduction
m0
as
[|
k
v
m0
Hk
]
"IH"
using
map_ind
forall
(
m
m1
Hdom
)
.
-
rewrite
dom_empty_L
in
Hdom
.
apply
dom_empty_inv_L
in
Hdom
as
->
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment