Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
57f583d4
Commit
57f583d4
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
remove commented-out old axioms
parent
d4992ced
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ectx_lang.v
+0
-68
0 additions, 68 deletions
ectx_lang.v
with
0 additions
and
68 deletions
ectx_lang.v
+
0
−
68
View file @
57f583d4
...
@@ -23,35 +23,6 @@ Module Type ECTX_LANG.
...
@@ -23,35 +23,6 @@ Module Type ECTX_LANG.
Parameter
empty_ctx
:
ectx
.
Parameter
empty_ctx
:
ectx
.
Parameter
comp_ctx
:
ectx
->
ectx
->
ectx
.
Parameter
comp_ctx
:
ectx
->
ectx
->
ectx
.
Parameter
fill
:
ectx
->
expr
->
expr
.
Parameter
fill
:
ectx
->
expr
->
expr
.
(*
All of
comp_ctx_assoc
comp_ctx_inj_r
comp_ctx_emp_r
arise only in the proof of
step_same_ctx K K' e e' :
fill K e = fill K' e' ->
reducible e ->
reducible e' ->
K = K'.
Moreover, comp_ctx_positive gets used only in step_same_ctx
and
It might be simpler to (prove and) assume these two rather
than those four.
*)
(* Axiom comp_ctx_emp_r : forall K,
comp_ctx K empty_ctx = K.
Axiom comp_ctx_assoc : forall K0 K1 K2,
comp_ctx K0 (comp_ctx K1 K2) = comp_ctx (comp_ctx K0 K1) K2.
Axiom comp_ctx_inj_r : forall K K1 K2,
comp_ctx K K1 = comp_ctx K K2 -> K1 = K2.
Axiom comp_ctx_positive : forall K1 K2,
comp_ctx K1 K2 = empty_ctx -> K1 = empty_ctx /\ K2 = empty_ctx. *)
Axiom
fill_empty
:
forall
e
,
fill
empty_ctx
e
=
e
.
Axiom
fill_empty
:
forall
e
,
fill
empty_ctx
e
=
e
.
Axiom
fill_comp
:
forall
K1
K2
e
,
fill
K1
(
fill
K2
e
)
=
fill
(
comp_ctx
K1
K2
)
e
.
Axiom
fill_comp
:
forall
K1
K2
e
,
fill
K1
(
fill
K2
e
)
=
fill
(
comp_ctx
K1
K2
)
e
.
...
@@ -119,45 +90,6 @@ Module EctxCoreLang (C: ECTX_LANG) <: CORE_LANG.
...
@@ -119,45 +90,6 @@ Module EctxCoreLang (C: ECTX_LANG) <: CORE_LANG.
Definition
state
:=
C
.
state
.
Definition
state
:=
C
.
state
.
Definition
prim_cfg
:=
C
.
prim_cfg
.
Definition
prim_cfg
:=
C
.
prim_cfg
.
(** Some derived properties **)
(* Section Derived.
Import C.
Lemma reducible_not_value {e} :
reducible e -> ~is_value e.
Proof.
intros H_red H_val.
eapply values_stuck; try eassumption.
now erewrite fill_empty.
Qed.
(* Lemma step_same_ctx {K K' e e'} :
fill K e = fill K' e' ->
reducible e ->
reducible e' ->
K = K'.
Proof.
intros H_fill H_red H_red'.
edestruct (step_by_value K K' e e') as [K'' H_K''].
- assumption.
- assumption.
- now apply reducible_not_value.
- edestruct (step_by_value K' K e' e) as [K''' H_K'''].
+ now symmetry.
+ assumption.
+ now apply reducible_not_value.
+ subst K.
rewrite <- comp_ctx_assoc in H_K''.
assert (H_emp := comp_ctx_neut_emp_r H_K'').
apply comp_ctx_positive in H_emp.
destruct H_emp as[H_K'''_emp H_K''_emp].
subst K'' K'''.
now rewrite comp_ctx_emp_r.
Qed. *)
End Derived.
*)
(** Base reduction **)
(** Base reduction **)
Definition
prim_step
(
c1
c2
:
prim_cfg
)
(
ef
:
option
expr
)
:=
Definition
prim_step
(
c1
c2
:
prim_cfg
)
(
ef
:
option
expr
)
:=
match
c1
,
c2
with
match
c1
,
c2
with
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment