Skip to content
Snippets Groups Projects
Commit 56fd0a20 authored by Ralf Jung's avatar Ralf Jung
Browse files

re-establish the stateful lifting

parent 337c3a2a
No related branches found
No related tags found
No related merge requests found
...@@ -248,46 +248,41 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL ...@@ -248,46 +248,41 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
Implicit Types (P : Props) (n k : nat) (safe : bool) (m : DecEnsemble nat) (e : expr) (r : res) (σ : state) (w : Wld). Implicit Types (P : Props) (n k : nat) (safe : bool) (m : DecEnsemble nat) (e : expr) (r : res) (σ : state) (w : Wld).
Implicit Types (φ : expr * state -=> Prop). Implicit Types (φ : expr * state * option expr -=> Prop).
Implicit Types (Q : vPred). Implicit Types (Q : vPred).
(* Obligation common to lift_pred and lemma statement. *) (* Obligation common to lift_pred and lemma statement. *)
Program Definition lift_esPred φ : expr * state -n> Props := Program Definition lift_esPred φ : expr * state * option expr -n> Props :=
n[(fun c => pcmconst(sp_const(φ c)))]. n[(fun c => pcmconst(sp_const(φ c)))].
Next Obligation. Next Obligation.
move=>[e1 σ1] [e2 σ2] [EQe EQσ]. move=>[[e1 σ1] ef1] [[e2 σ2] ef2] [[EQe EQσ] EQef].
destruct n; first exact:dist_bound. destruct n; first exact:dist_bound.
cbv in EQe, EQσ. subst. reflexivity. destruct ef1, ef2; cbv in EQe, EQσ, EQef; subst; now destruct EQef || reflexivity.
Qed. Qed.
Program Definition plug_esPred φ safe m P Q: expr * state -n> Props := Program Definition lift_step_wp_quant safe m φ Q : expr * state * option expr -n> Props :=
n[(fun c => let: (e',σ') := c in ht safe m (lift_esPred φ (e',σ') (P * ownS σ')) e' Q)]. n[(fun c => let: (e',σ',ef) := c in
(lift_esPred φ c ownS σ') -*
(wp safe m e' Q * match ef with None => | Some ef => wp safe de_full ef (umconst ) end) )].
Next Obligation. Next Obligation.
move=>[e1 σ1] [e2 σ2] [EQe EQσ]. move=>[[e1 σ1] ef1] [[e2 σ2] ef2] [[EQe EQσ] EQef].
destruct n; first exact:dist_bound. destruct n; first exact:dist_bound.
cbv in EQe, EQσ. subst. reflexivity. destruct ef1, ef2; cbv in EQe, EQσ, EQef; subst; now destruct EQef || reflexivity.
Qed.
Program Definition plug_esPredWp φ safe m P Q: expr * state -n> Props :=
n[(fun c => let: (e',σ') := c in (lift_esPred φ (e',σ') (P * ownS σ')) wp safe m e' Q)].
Next Obligation.
move=>[e1 σ1] [e2 σ2] [EQe EQσ].
destruct n; first exact:dist_bound.
cbv in EQe, EQσ. subst. reflexivity.
Qed. Qed.
Lemma lift_step_wp {m safe e σ φ P Q} Lemma lift_step_wp {m safe e σ φ P Q}
(RED : reducible e) (NVAL : ~is_value e)
(STEP : forall e' σ', prim_step (e,σ) (e',σ') -> φ(e',σ')) (STEP : forall e' σ' ef, prim_step (e,σ) (e',σ') ef -> φ(e',σ',ef))
(SAFE : if safe then safeExpr e σ else True) : (SAFE : if safe then safeExpr e σ else True) :
(forall e' σ', lift_esPred φ (e',σ') (P * ownS σ') wp safe m e' Q) -> (ownS σ * (all (lift_step_wp_quant safe m φ Q))) wp safe m e Q.
P * ownS σ wp safe m e Q.
Proof. Proof.
intros Hwpe' w n. destruct n; first (intro; exact:bpred). intros w n. destruct n; first (intro; exact:bpred).
intros [[w1 w2] [Heqw [HP HoS]]]. simpl in Heqw, HP. intros [[w1 w2] [Heqw [HoS Hwpe]]]. simpl in Heqw, Hwpe.
rewrite ->unfold_wp; move=> wf k mf σi HLt HD [rs HWT]. rewrite ->unfold_wp. split; intros.
{ contradiction. }
destruct HE as [rs HWT]. rename σ0 into σi.
cbv zeta in HWT. rewrite ->comp_finmap_move in HWT. cbv zeta in HWT. rewrite ->comp_finmap_move in HWT.
have : σ = σi /\ State (w1 · comp_finmap wf rs) = ex_unit. have : σ = σi /\ State (w2 · comp_finmap wf rs) = ex_unit.
{ clear - HoS Heqw HWT HLt. destruct HWT as [[_ [pv _]] [HS _]]. { clear - HoS Heqw HWT HLt. destruct HWT as [[_ [pv _]] [HS _]].
destruct HoS as [t Heq]. destruct Heqw as [_ [HeqS _]]. simpl in *. destruct HoS as [t Heq]. destruct Heqw as [_ [HeqS _]]. simpl in *.
destruct HS as [t' HS]. destruct HS as [t' HS].
...@@ -296,39 +291,38 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL ...@@ -296,39 +291,38 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
destruct (fst (snd (comp_finmap wf rs))), t'; simpl in *; try tauto; []. destruct (fst (snd (comp_finmap wf rs))), t'; simpl in *; try tauto; [].
split; last reflexivity. rewrite -HS -HeqS -Heq. reflexivity. } split; last reflexivity. rewrite -HS -HeqS -Heq. reflexivity. }
destruct as [ HStUnit]. clear HoS. subst σi. destruct as [ HStUnit]. clear HoS. subst σi.
split; [| split; [| split ]]; first 2 last. split; last first.
{ move=> e' K HDec; exfalso; exact: (reducible_not_fork RED HDec). } { by move: SAFE {Hwpe} ; case: safe. }
{ by move: SAFE {Hwpe'} ; case: safe. } move=> e' σ' ef HStep {SAFE NVAL}.
{ move=> HV; exfalso. apply: reducible_not_value; eassumption. } pose (w1' := (Invs w1, (ex_own σ', Res w1))).
move=> σ' ei e' K HDec HStep {SAFE}. move: (Hwpe (e', σ', ef) w1' n (le_refl _))=>{Hwpe}. destruct n; first by (exfalso; omega).
have HK: K = ε. case; last move=>[w3e w3f] [Hw3 [Hwpe Hwpf]].
{ move: HDec; rewrite -(fill_empty e) => HDec. { split; first by apply STEP. simpl. eexists ex_unit. reflexivity. }
have HRed1: reducible ei by exists σ (e',σ'). eexists w3e, w3f. split; last split.
eapply step_same_ctx; first (symmetry; eassumption); eassumption. } - eapply propsMN, Hwpe. omega.
subst K. move: HDec HStep; rewrite 2!fill_empty. move=><- HStep {ei RED}. - destruct ef; last done. eapply propsMN, Hwpf. omega.
pose (w2' := (Invs w2, (ex_own σ', Res w2))).
eexists (w1 · w2'). split.
- (* We can now apply the wp we got. *)
apply (Hwpe' e' σ'). split.
{ simpl. eapply STEP. assumption. }
exists (w1, w2'). split; first (apply sp_eq_iff; reflexivity).
split; simpl.
* simpl. eapply propsMN, HP. omega.
* eexists ex_unit. reflexivity.
- (* wsat σ' follows from wsat σ (by the construction of the new world). *) - (* wsat σ' follows from wsat σ (by the construction of the new world). *)
destruct k; first exact I. simpl. destruct k; first done. simpl.
exists rs. rewrite comp_finmap_move.
(* Rewrite Heqw in HWT - needs manual work *)
assert(HWT': wsatTotal (S k) σ rs (m mf)%de (w1 · w2 · comp_finmap wf rs)). assert(HWT': wsatTotal (S k) σ rs (m mf)%de (w1 · w2 · comp_finmap wf rs)).
{ eapply wsatTotal_proper, wsatTotal_dclosed, HWT; try reflexivity; last omega; []. { eapply wsatTotal_proper, wsatTotal_dclosed, HWT; try reflexivity; last omega; [].
apply cmra_op_dist; last reflexivity. eapply mono_dist, Heqw. omega. } apply cmra_op_dist; last reflexivity. eapply mono_dist, Heqw. omega. }
clear HWT. destruct HWT' as [pv [HS HI]]. clear HWT. destruct HWT' as [pv [HS HI]].
exists rs. rewrite comp_finmap_move. (* Rewrite Hw3 in the goal - needs manual work *)
assert (HSt: State (w1 · w2' · comp_finmap wf rs) == ex_own σ'). rewrite /Mfst /Msnd in Hw3. simpl morph in Hw3. apply sp_eq_iff in Hw3.
{ clear -HStUnit. rewrite /State (comm w1) -assoc. simpl. simpl in HStUnit. cut (wsatTotal (S k) σ' rs (m mf)%de (w1' · w2 · comp_finmap wf rs)).
{ eapply wsatTotal_proper; first reflexivity. apply cmra_op_dist; last reflexivity.
rewrite (comm w1') (comm w3f). eapply mono_dist, Hw3. omega. }
(* Get the projection to the physical state *)
assert (HSt: State (w1' · w2 · comp_finmap wf rs) == ex_own σ').
{ clear -HStUnit. simpl in HStUnit. rewrite /State -assoc. simpl.
rewrite HStUnit. reflexivity. } rewrite HStUnit. reflexivity. }
clear HStUnit. clear HStUnit.
(* Now, finally, prove the actual thing *)
split; last split. split; last split.
+ clear- pv HSt Heqw HLt. + clear- pv HSt Heqw HLt.
destruct pv as [HIVal [HSVal HRVal]]. rewrite /w2'. destruct pv as [HIVal [HSVal HRVal]]. rewrite /w1'.
split; last split; last 1 first. split; last split; last 1 first.
* assumption. * assumption.
* assumption. * assumption.
...@@ -338,6 +332,23 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL ...@@ -338,6 +332,23 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
Qed. Qed.
(* The "nicer looking" (ht-based) lemma is now a derived form. *) (* The "nicer looking" (ht-based) lemma is now a derived form. *)
Program Definition plug_esPred φ safe m P P' Q: expr * state * option expr -n> Props :=
n[(fun c => let: (e',σ',ef) := c in ht safe m (lift_esPred φ c (P * ownS σ')) e' Q match ef with None => | Some ef => ht safe m (lift_esPred φ c P') ef (umconst ) end )].
Next Obligation.
move=>[[e1 σ1] ef1] [[e2 σ2] ef2] [[EQe EQσ] EQef].
destruct n; first exact:dist_bound.
destruct ef1, ef2; cbv in EQe, EQσ, EQef; subst; now destruct EQef || reflexivity.
Qed.
(* This is a temporary definition, used only in the proof of lift_step *)
Program Definition plug_esPredWp φ safe m P Q: expr * state * option expr -n> Props :=
n[(fun c => let: (e',σ',ef) := c in (lift_esPred φ c (P * ownS σ')) wp safe m e' Q)].
Next Obligation.
move=>[[e1 σ1] ef1] [[e2 σ2] ef2] [[EQe EQσ] EQef].
destruct n; first exact:dist_bound.
destruct ef1, ef2; cbv in EQe, EQσ, EQef; subst; now destruct EQef || reflexivity.
Qed.
Lemma lift_step {m safe e σ φ P Q} Lemma lift_step {m safe e σ φ P Q}
(RED : reducible e) (RED : reducible e)
(STEP : forall e' σ', prim_step (e,σ) (e',σ') -> φ(e',σ')) (STEP : forall e' σ', prim_step (e,σ) (e',σ') -> φ(e',σ'))
...@@ -372,7 +383,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL ...@@ -372,7 +383,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
hnf in HEq. eapply xist_dist=>σ' w. rewrite [dist]lock /= HEq -lock. reflexivity. hnf in HEq. eapply xist_dist=>σ' w. rewrite [dist]lock /= HEq -lock. reflexivity.
Qed. Qed.
Lemma lift_atomic_det_step {m safe e σ φ P Q} Lemma lift_atomic_step {m safe e σ φ P Q}
(AT : atomic e) (AT : atomic e)
(STEP : forall e' σ', prim_step (e,σ) (e',σ') -> φ(e',σ')) (STEP : forall e' σ', prim_step (e,σ) (e',σ') -> φ(e',σ'))
(SAFE : if safe then safeExpr e σ else True) : (SAFE : if safe then safeExpr e σ else True) :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment