Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
56fd0a20
Commit
56fd0a20
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
re-establish the stateful lifting
parent
337c3a2a
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris_meta.v
+61
-50
61 additions, 50 deletions
iris_meta.v
with
61 additions
and
50 deletions
iris_meta.v
+
61
−
50
View file @
56fd0a20
...
@@ -248,46 +248,41 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
...
@@ -248,46 +248,41 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
Implicit
Types
(
P
:
Props
)
(
n
k
:
nat
)
(
safe
:
bool
)
(
m
:
DecEnsemble
nat
)
(
e
:
expr
)
(
r
:
res
)
(
σ
:
state
)
(
w
:
Wld
)
.
Implicit
Types
(
P
:
Props
)
(
n
k
:
nat
)
(
safe
:
bool
)
(
m
:
DecEnsemble
nat
)
(
e
:
expr
)
(
r
:
res
)
(
σ
:
state
)
(
w
:
Wld
)
.
Implicit
Types
(
φ
:
expr
*
state
-=>
Prop
)
.
Implicit
Types
(
φ
:
expr
*
state
*
option
expr
-=>
Prop
)
.
Implicit
Types
(
Q
:
vPred
)
.
Implicit
Types
(
Q
:
vPred
)
.
(* Obligation common to lift_pred and lemma statement. *)
(* Obligation common to lift_pred and lemma statement. *)
Program
Definition
lift_esPred
φ
:
expr
*
state
-
n
>
Props
:=
Program
Definition
lift_esPred
φ
:
expr
*
state
*
option
expr
-
n
>
Props
:=
n
[(
fun
c
=>
pcmconst
(
sp_const
(
φ
c
)))]
.
n
[(
fun
c
=>
pcmconst
(
sp_const
(
φ
c
)))]
.
Next
Obligation
.
Next
Obligation
.
move
=>[
e1
σ1
]
[
e2
σ2
]
[
EQe
EQσ
]
.
move
=>[
[
e1
σ1
]
ef1
]
[
[
e2
σ2
]
ef2
]
[
[
EQe
EQσ
]
EQef
]
.
destruct
n
;
first
exact
:
dist_bound
.
destruct
n
;
first
exact
:
dist_bound
.
cbv
in
EQe
,
EQσ
.
subst
.
reflexivity
.
destruct
ef1
,
ef2
;
cbv
in
EQe
,
EQσ
,
EQef
;
subst
;
now
destruct
EQef
||
reflexivity
.
Qed
.
Qed
.
Program
Definition
plug_esPred
φ
safe
m
P
Q
:
expr
*
state
-
n
>
Props
:=
Program
Definition
lift_step_wp_quant
safe
m
φ
Q
:
expr
*
state
*
option
expr
-
n
>
Props
:=
n
[(
fun
c
=>
let
:
(
e'
,
σ'
)
:=
c
in
ht
safe
m
(
lift_esPred
φ
(
e'
,
σ'
)
∧
(
P
*
ownS
σ'
))
e'
Q
)]
.
n
[(
fun
c
=>
let
:
(
e'
,
σ'
,
ef
)
:=
c
in
(
lift_esPred
φ
c
∧
ownS
σ'
)
-*
(
wp
safe
m
e'
Q
*
match
ef
with
None
=>
⊤
|
Some
ef
=>
wp
safe
de_full
ef
(
umconst
⊤
)
end
)
)]
.
Next
Obligation
.
Next
Obligation
.
move
=>[
e1
σ1
]
[
e2
σ2
]
[
EQe
EQσ
]
.
move
=>[
[
e1
σ1
]
ef1
]
[
[
e2
σ2
]
ef2
]
[
[
EQe
EQσ
]
EQef
]
.
destruct
n
;
first
exact
:
dist_bound
.
destruct
n
;
first
exact
:
dist_bound
.
cbv
in
EQe
,
EQσ
.
subst
.
reflexivity
.
destruct
ef1
,
ef2
;
cbv
in
EQe
,
EQσ
,
EQef
;
subst
;
now
destruct
EQef
||
reflexivity
.
Qed
.
Program
Definition
plug_esPredWp
φ
safe
m
P
Q
:
expr
*
state
-
n
>
Props
:=
n
[(
fun
c
=>
let
:
(
e'
,
σ'
)
:=
c
in
(
lift_esPred
φ
(
e'
,
σ'
)
∧
(
P
*
ownS
σ'
))
→
wp
safe
m
e'
Q
)]
.
Next
Obligation
.
move
=>[
e1
σ1
]
[
e2
σ2
]
[
EQe
EQσ
]
.
destruct
n
;
first
exact
:
dist_bound
.
cbv
in
EQe
,
EQσ
.
subst
.
reflexivity
.
Qed
.
Qed
.
Lemma
lift_step_wp
{
m
safe
e
σ
φ
P
Q
}
Lemma
lift_step_wp
{
m
safe
e
σ
φ
P
Q
}
(
RED
:
reducibl
e
e
)
(
NVAL
:
~is_valu
e
e
)
(
STEP
:
forall
e'
σ'
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
->
φ
(
e'
,
σ'
))
(
STEP
:
forall
e'
σ'
ef
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
ef
->
φ
(
e'
,
σ'
,
ef
))
(
SAFE
:
if
safe
then
safeExpr
e
σ
else
True
)
:
(
SAFE
:
if
safe
then
safeExpr
e
σ
else
True
)
:
(
forall
e'
σ'
,
lift_esPred
φ
(
e'
,
σ'
)
∧
(
P
*
ownS
σ'
)
⊑
wp
safe
m
e'
Q
)
->
(
ownS
σ
*
▹
(
all
(
lift_step_wp_quant
safe
m
φ
Q
)))
⊑
wp
safe
m
e
Q
.
▹
P
*
ownS
σ
⊑
wp
safe
m
e
Q
.
Proof
.
Proof
.
intros
Hwpe'
w
n
.
destruct
n
;
first
(
intro
;
exact
:
bpred
)
.
intros
w
n
.
destruct
n
;
first
(
intro
;
exact
:
bpred
)
.
intros
[[
w1
w2
]
[
Heqw
[
HP
HoS
]]]
.
simpl
in
Heqw
,
HP
.
intros
[[
w1
w2
]
[
Heqw
[
HoS
Hwpe
]]]
.
simpl
in
Heqw
,
Hwpe
.
rewrite
->
unfold_wp
;
move
=>
wf
k
mf
σi
HLt
HD
[
rs
HWT
]
.
rewrite
->
unfold_wp
.
split
;
intros
.
{
contradiction
.
}
destruct
HE
as
[
rs
HWT
]
.
rename
σ0
into
σi
.
cbv
zeta
in
HWT
.
rewrite
->
comp_finmap_move
in
HWT
.
cbv
zeta
in
HWT
.
rewrite
->
comp_finmap_move
in
HWT
.
have
Hσ
:
σ
=
σi
/\
State
(
w
1
·
comp_finmap
wf
rs
)
=
ex_unit
.
have
Hσ
:
σ
=
σi
/\
State
(
w
2
·
comp_finmap
wf
rs
)
=
ex_unit
.
{
clear
-
HoS
Heqw
HWT
HLt
.
destruct
HWT
as
[[_
[
pv
_]]
[
HS
_]]
.
{
clear
-
HoS
Heqw
HWT
HLt
.
destruct
HWT
as
[[_
[
pv
_]]
[
HS
_]]
.
destruct
HoS
as
[
t
Heq
]
.
destruct
Heqw
as
[_
[
HeqS
_]]
.
simpl
in
*.
destruct
HoS
as
[
t
Heq
]
.
destruct
Heqw
as
[_
[
HeqS
_]]
.
simpl
in
*.
destruct
HS
as
[
t'
HS
]
.
destruct
HS
as
[
t'
HS
]
.
...
@@ -296,39 +291,38 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
...
@@ -296,39 +291,38 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
destruct
(
fst
(
snd
(
comp_finmap
wf
rs
))),
t'
;
simpl
in
*
;
try
tauto
;
[]
.
destruct
(
fst
(
snd
(
comp_finmap
wf
rs
))),
t'
;
simpl
in
*
;
try
tauto
;
[]
.
split
;
last
reflexivity
.
rewrite
-
HS
-
HeqS
-
Heq
.
reflexivity
.
}
split
;
last
reflexivity
.
rewrite
-
HS
-
HeqS
-
Heq
.
reflexivity
.
}
destruct
Hσ
as
[
Hσ
HStUnit
]
.
clear
HoS
.
subst
σi
.
destruct
Hσ
as
[
Hσ
HStUnit
]
.
clear
HoS
.
subst
σi
.
split
;
[|
split
;
[|
split
]];
first
2
last
.
split
;
last
first
.
{
move
=>
e'
K
HDec
;
exfalso
;
exact
:
(
reducible_not_fork
RED
HDec
)
.
}
{
by
move
:
SAFE
{
Hwpe
}
;
case
:
safe
.
}
{
by
move
:
SAFE
{
Hwpe'
}
;
case
:
safe
.
}
move
=>
e'
σ'
ef
HStep
{
SAFE
NVAL
}
.
{
move
=>
HV
;
exfalso
.
apply
:
reducible_not_value
;
eassumption
.
}
pose
(
w1'
:=
(
Invs
w1
,
(
ex_own
σ'
,
Res
w1
)))
.
move
=>
σ'
ei
e'
K
HDec
HStep
{
SAFE
}
.
move
:
(
Hwpe
(
e'
,
σ'
,
ef
)
w1'
n
(
le_refl
_))=>{
Hwpe
}
.
destruct
n
;
first
by
(
exfalso
;
omega
)
.
have
HK
:
K
=
ε
.
case
;
last
move
=>[
w3e
w3f
]
[
Hw3
[
Hwpe
Hwpf
]]
.
{
move
:
HDec
;
rewrite
-
(
fill_empty
e
)
=>
HDec
.
{
split
;
first
by
apply
STEP
.
simpl
.
eexists
ex_unit
.
reflexivity
.
}
have
HRed1
:
reducible
ei
by
exists
σ
(
e'
,
σ'
)
.
eexists
w3e
,
w3f
.
split
;
last
split
.
eapply
step_same_ctx
;
first
(
symmetry
;
eassumption
);
eassumption
.
}
-
eapply
propsMN
,
Hwpe
.
omega
.
subst
K
.
move
:
HDec
HStep
;
rewrite
2
!
fill_empty
.
move
=>
<-
HStep
{
ei
RED
}
.
-
destruct
ef
;
last
done
.
eapply
propsMN
,
Hwpf
.
omega
.
pose
(
w2'
:=
(
Invs
w2
,
(
ex_own
σ'
,
Res
w2
)))
.
eexists
(
w1
·
w2'
)
.
split
.
-
(* We can now apply the wp we got. *)
apply
(
Hwpe'
e'
σ'
)
.
split
.
{
simpl
.
eapply
STEP
.
assumption
.
}
exists
(
w1
,
w2'
)
.
split
;
first
(
apply
sp_eq_iff
;
reflexivity
)
.
split
;
simpl
.
*
simpl
.
eapply
propsMN
,
HP
.
omega
.
*
eexists
ex_unit
.
reflexivity
.
-
(* wsat σ' follows from wsat σ (by the construction of the new world). *)
-
(* wsat σ' follows from wsat σ (by the construction of the new world). *)
destruct
k
;
first
exact
I
.
simpl
.
destruct
k
;
first
done
.
simpl
.
exists
rs
.
rewrite
comp_finmap_move
.
(* Rewrite Heqw in HWT - needs manual work *)
assert
(
HWT'
:
wsatTotal
(
S
k
)
σ
rs
(
m
∪
mf
)
%
de
(
w1
·
w2
·
comp_finmap
wf
rs
))
.
assert
(
HWT'
:
wsatTotal
(
S
k
)
σ
rs
(
m
∪
mf
)
%
de
(
w1
·
w2
·
comp_finmap
wf
rs
))
.
{
eapply
wsatTotal_proper
,
wsatTotal_dclosed
,
HWT
;
try
reflexivity
;
last
omega
;
[]
.
{
eapply
wsatTotal_proper
,
wsatTotal_dclosed
,
HWT
;
try
reflexivity
;
last
omega
;
[]
.
apply
cmra_op_dist
;
last
reflexivity
.
eapply
mono_dist
,
Heqw
.
omega
.
}
apply
cmra_op_dist
;
last
reflexivity
.
eapply
mono_dist
,
Heqw
.
omega
.
}
clear
HWT
.
destruct
HWT'
as
[
pv
[
HS
HI
]]
.
clear
HWT
.
destruct
HWT'
as
[
pv
[
HS
HI
]]
.
exists
rs
.
rewrite
comp_finmap_move
.
(* Rewrite Hw3 in the goal - needs manual work *)
assert
(
HSt
:
State
(
w1
·
w2'
·
comp_finmap
wf
rs
)
==
ex_own
σ'
)
.
rewrite
/
Mfst
/
Msnd
in
Hw3
.
simpl
morph
in
Hw3
.
apply
sp_eq_iff
in
Hw3
.
{
clear
-
HStUnit
.
rewrite
/
State
(
comm
w1
)
-
assoc
.
simpl
.
simpl
in
HStUnit
.
cut
(
wsatTotal
(
S
k
)
σ'
rs
(
m
∪
mf
)
%
de
(
w1'
·
w2
·
comp_finmap
wf
rs
))
.
{
eapply
wsatTotal_proper
;
first
reflexivity
.
apply
cmra_op_dist
;
last
reflexivity
.
rewrite
(
comm
w1'
)
(
comm
w3f
)
.
eapply
mono_dist
,
Hw3
.
omega
.
}
(* Get the projection to the physical state *)
assert
(
HSt
:
State
(
w1'
·
w2
·
comp_finmap
wf
rs
)
==
ex_own
σ'
)
.
{
clear
-
HStUnit
.
simpl
in
HStUnit
.
rewrite
/
State
-
assoc
.
simpl
.
rewrite
HStUnit
.
reflexivity
.
}
rewrite
HStUnit
.
reflexivity
.
}
clear
HStUnit
.
clear
HStUnit
.
(* Now, finally, prove the actual thing *)
split
;
last
split
.
split
;
last
split
.
+
clear
-
pv
HSt
Heqw
HLt
.
+
clear
-
pv
HSt
Heqw
HLt
.
destruct
pv
as
[
HIVal
[
HSVal
HRVal
]]
.
rewrite
/
w
2
'
.
destruct
pv
as
[
HIVal
[
HSVal
HRVal
]]
.
rewrite
/
w
1
'
.
split
;
last
split
;
last
1
first
.
split
;
last
split
;
last
1
first
.
*
assumption
.
*
assumption
.
*
assumption
.
*
assumption
.
...
@@ -338,6 +332,23 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
...
@@ -338,6 +332,23 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
Qed
.
Qed
.
(* The "nicer looking" (ht-based) lemma is now a derived form. *)
(* The "nicer looking" (ht-based) lemma is now a derived form. *)
Program
Definition
plug_esPred
φ
safe
m
P
P'
Q
:
expr
*
state
*
option
expr
-
n
>
Props
:=
n
[(
fun
c
=>
let
:
(
e'
,
σ'
,
ef
)
:=
c
in
ht
safe
m
(
lift_esPred
φ
c
∧
(
P
*
ownS
σ'
))
e'
Q
∧
match
ef
with
None
=>
⊤
|
Some
ef
=>
ht
safe
m
(
lift_esPred
φ
c
∧
P'
)
ef
(
umconst
⊤
)
end
)]
.
Next
Obligation
.
move
=>[[
e1
σ1
]
ef1
]
[[
e2
σ2
]
ef2
]
[[
EQe
EQσ
]
EQef
]
.
destruct
n
;
first
exact
:
dist_bound
.
destruct
ef1
,
ef2
;
cbv
in
EQe
,
EQσ
,
EQef
;
subst
;
now
destruct
EQef
||
reflexivity
.
Qed
.
(* This is a temporary definition, used only in the proof of lift_step *)
Program
Definition
plug_esPredWp
φ
safe
m
P
Q
:
expr
*
state
*
option
expr
-
n
>
Props
:=
n
[(
fun
c
=>
let
:
(
e'
,
σ'
,
ef
)
:=
c
in
(
lift_esPred
φ
c
∧
(
P
*
ownS
σ'
))
→
wp
safe
m
e'
Q
)]
.
Next
Obligation
.
move
=>[[
e1
σ1
]
ef1
]
[[
e2
σ2
]
ef2
]
[[
EQe
EQσ
]
EQef
]
.
destruct
n
;
first
exact
:
dist_bound
.
destruct
ef1
,
ef2
;
cbv
in
EQe
,
EQσ
,
EQef
;
subst
;
now
destruct
EQef
||
reflexivity
.
Qed
.
Lemma
lift_step
{
m
safe
e
σ
φ
P
Q
}
Lemma
lift_step
{
m
safe
e
σ
φ
P
Q
}
(
RED
:
reducible
e
)
(
RED
:
reducible
e
)
(
STEP
:
forall
e'
σ'
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
->
φ
(
e'
,
σ'
))
(
STEP
:
forall
e'
σ'
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
->
φ
(
e'
,
σ'
))
...
@@ -372,7 +383,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
...
@@ -372,7 +383,7 @@ Module Type IRIS_META (RL : VIRA_T) (C : CORE_LANG) (R: IRIS_RES RL C) (WP: WORL
hnf
in
HEq
.
eapply
xist_dist
=>
σ'
w
.
rewrite
[
dist
]
lock
/=
HEq
-
lock
.
reflexivity
.
hnf
in
HEq
.
eapply
xist_dist
=>
σ'
w
.
rewrite
[
dist
]
lock
/=
HEq
-
lock
.
reflexivity
.
Qed
.
Qed
.
Lemma
lift_atomic_
det_
step
{
m
safe
e
σ
φ
P
Q
}
Lemma
lift_atomic_step
{
m
safe
e
σ
φ
P
Q
}
(
AT
:
atomic
e
)
(
AT
:
atomic
e
)
(
STEP
:
forall
e'
σ'
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
->
φ
(
e'
,
σ'
))
(
STEP
:
forall
e'
σ'
,
prim_step
(
e
,
σ
)
(
e'
,
σ'
)
->
φ
(
e'
,
σ'
))
(
SAFE
:
if
safe
then
safeExpr
e
σ
else
True
)
:
(
SAFE
:
if
safe
then
safeExpr
e
σ
else
True
)
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment