Skip to content
Snippets Groups Projects
Commit 3ec81a3d authored by Ralf Jung's avatar Ralf Jung
Browse files

define and prove array_free

parent 923d6b71
No related branches found
No related tags found
No related merge requests found
......@@ -124,7 +124,7 @@ theories/heap_lang/lib/atomic_heap.v
theories/heap_lang/lib/increment.v
theories/heap_lang/lib/diverge.v
theories/heap_lang/lib/arith.v
theories/heap_lang/lib/array_copy.v
theories/heap_lang/lib/array_tools.v
theories/proofmode/base.v
theories/proofmode/tokens.v
theories/proofmode/coq_tactics.v
......
......@@ -4,18 +4,28 @@ From iris.heap_lang Require Export lang array.
From iris.heap_lang Require Import proofmode notation.
Set Default Proof Using "Type".
(** Implement [array_copy_to], a function which copies to an array in-place.
(** Provides some array utilities:
Using [array_copy_to] we also implement [array_clone], which allocates a fresh
array and copies to it. *)
* [array_free], to deallocate an entire array in one go.
* [array_copy_to], a function which copies to an array in-place.
* Using [array_copy_to] we also implement [array_clone], which allocates a fresh
array and copies to it.
Definition array_copy_to: val :=
*)
Definition array_free : val :=
rec: "freeN" "ptr" "n" :=
if: "n" #0 then #()
else Free "ptr";;
"freeN" ("ptr" + #1) ("n" - #1).
Definition array_copy_to : val :=
rec: "array_copy_to" "dst" "src" "n" :=
if: "n" #0 then #()
else "dst" <- !"src";;
"array_copy_to" ("dst" + #1) ("src" + #1) ("n" - #1).
Definition array_clone: val :=
Definition array_clone : val :=
λ: "src" "n",
let: "dst" := AllocN "n" #() in
array_copy_to "dst" "src" "n";;
......@@ -24,7 +34,25 @@ Definition array_clone: val :=
Section proof.
Context `{!heapG Σ}.
Theorem twp_array_copy_to stk E (dst src: loc) vdst vsrc q (n:Z) :
Lemma twp_array_free s E l vs (n : Z) :
n = length vs
[[{ l ↦∗ vs }]] array_free #l #n @ s; E [[{ RET #(); True }]].
Proof.
iIntros (Hlen Φ) "Hl HΦ".
iInduction vs as [|v vs] "IH" forall (l n Hlen); subst n; wp_rec; wp_pures.
{ iApply "HΦ". done. }
iDestruct (array_cons with "Hl") as "[Hv Hl]".
wp_free. wp_pures. iApply ("IH" with "[] Hl"); eauto with lia.
Qed.
Lemma wp_array_free s E l vs (n : Z) :
n = length vs
{{{ l ↦∗ vs }}} array_free #l #n @ s; E {{{ RET #(); True }}}.
Proof.
iIntros (? Φ) "H HΦ". iApply (twp_wp_step with "HΦ").
iApply (twp_array_free with "H"); [auto..|]; iIntros "H HΦ". by iApply "HΦ".
Qed.
Theorem twp_array_copy_to stk E (dst src : loc) vdst vsrc q (n : Z) :
Z.of_nat (length vdst) = n Z.of_nat (length vsrc) = n
[[{ dst ↦∗ vdst src ↦∗{q} vsrc }]]
array_copy_to #dst #src #n @ stk; E
......@@ -41,7 +69,7 @@ Section proof.
iIntros "[Hvdst Hvsrc]".
iApply "HΦ"; by iFrame.
Qed.
Theorem wp_array_copy_to stk E (dst src: loc) vdst vsrc q (n:Z) :
Theorem wp_array_copy_to stk E (dst src : loc) vdst vsrc q (n : Z) :
Z.of_nat (length vdst) = n Z.of_nat (length vsrc) = n
{{{ dst ↦∗ vdst src ↦∗{q} vsrc }}}
array_copy_to #dst #src #n @ stk; E
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment