Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
2c644a10
Commit
2c644a10
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Generic properties for commuting big ops.
parent
123a7c05
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/cmra_big_op.v
+61
-1
61 additions, 1 deletion
algebra/cmra_big_op.v
algebra/upred_big_op.v
+90
-30
90 additions, 30 deletions
algebra/upred_big_op.v
with
151 additions
and
31 deletions
algebra/cmra_big_op.v
+
61
−
1
View file @
2c644a10
...
...
@@ -185,7 +185,6 @@ Section list.
Qed
.
End
list
.
(** ** Big ops over finite maps *)
Section
gmap
.
Context
`{
Countable
K
}
{
A
:
Type
}
.
...
...
@@ -371,3 +370,64 @@ Section gset.
Qed
.
End
gset
.
End
big_op
.
Lemma
big_opL_commute
{
M1
M2
:
ucmraT
}
{
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
nat
→
A
→
M1
)
l
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
≡
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
))
.
Proof
.
intros
??
.
revert
f
.
induction
l
as
[|
x
l
IH
]=>
f
.
-
by
rewrite
!
big_opL_nil
.
-
by
rewrite
!
big_opL_cons
-
IH
.
Qed
.
Lemma
big_opL_commute1
{
M1
M2
:
ucmraT
}
{
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
nat
→
A
→
M1
)
l
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
l
≠
[]
→
h
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
≡
([
⋅
list
]
k
↦
x
∈
l
,
h
(
f
k
x
))
.
Proof
.
intros
??
.
revert
f
.
induction
l
as
[|
x
[|
x'
l'
]
IH
]=>
f
//.
-
by
rewrite
!
big_opL_singleton
.
-
by
rewrite
!
(
big_opL_cons
_
x
)
-
IH
.
Qed
.
Lemma
big_opM_commute
{
M1
M2
:
ucmraT
}
`{
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
K
→
A
→
M1
)
m
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
≡
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
))
.
Proof
.
intros
.
rewrite
/
big_opM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
csimpl
;
rewrite
-
?IH
;
auto
.
Qed
.
Lemma
big_opM_commute1
{
M1
M2
:
ucmraT
}
`{
Countable
K
}
{
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
K
→
A
→
M1
)
m
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
m
≠
∅
→
h
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
≡
([
⋅
map
]
k
↦
x
∈
m
,
h
(
f
k
x
))
.
Proof
.
rewrite
-
map_to_list_empty'
/
big_opM
=>
??
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
[|
i'
x'
]
IH
];
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_opS_commute
{
M1
M2
:
ucmraT
}
`{
Countable
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
A
→
M1
)
X
:
h
∅
≡
∅
→
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
h
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
h
(
f
x
))
.
Proof
.
intros
.
rewrite
/
big_opS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
csimpl
;
rewrite
-
?IH
;
auto
.
Qed
.
Lemma
big_opS_commute1
{
M1
M2
:
ucmraT
}
`{
Countable
A
}
(
h
:
M1
→
M2
)
`{
!
Proper
((
≡
)
==>
(
≡
))
h
}
(
f
:
A
→
M1
)
X
:
(
∀
x
y
,
h
(
x
⋅
y
)
≡
h
x
⋅
h
y
)
→
X
≢
∅
→
h
([
⋅
set
]
x
∈
X
,
f
x
)
≡
([
⋅
set
]
x
∈
X
,
h
(
f
x
))
.
Proof
.
rewrite
-
elements_empty'
/
big_opS
=>
??
.
induction
(
elements
X
)
as
[|
x
[|
x'
l
]
IH
];
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
This diff is collapsed.
Click to expand it.
algebra/upred_big_op.v
+
90
−
30
View file @
2c644a10
From
iris
.
algebra
Require
Export
upred
list
.
From
iris
.
algebra
Require
Export
upred
list
cmra_big_op
.
From
iris
.
prelude
Require
Import
gmap
fin_collections
functions
.
Import
uPred
.
...
...
@@ -267,21 +267,41 @@ Section list.
by
rewrite
-!
assoc
(
assoc
_
(
Ψ
_
_))
[(
Ψ
_
_
★
_)
%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepL_later
Φ
l
:
▷
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
.
Lemma
big_sepL_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
l
:
Ψ
True
⊣⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
Φ
k
x
))
.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
.
{
by
rewrite
!
big_sepL_nil
later_True
.
}
by
rewrite
!
big_sepL_cons
later_sep
IH
.
intros
??
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
//.
by
rewrite
!
big_sepL_cons
-
IH
.
Qed
.
Lemma
big_sepL_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
nat
→
A
→
B
)
l
:
Ψ
∅
⊣⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
f
k
x
))
.
Proof
.
intros
??
.
revert
f
.
induction
l
as
[|
x
l
IH
]=>
f
//.
by
rewrite
big_sepL_cons
big_opL_cons
-
IH
.
Qed
.
Lemma
big_sepL_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
nat
→
A
→
B
)
l
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
l
≠
[]
→
Ψ
([
⋅
list
]
k
↦
x
∈
l
,
f
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
Ψ
(
f
k
x
))
.
Proof
.
intros
??
.
revert
f
.
induction
l
as
[|
x
[|
x'
l'
]
IH
]=>
f
//.
{
by
rewrite
big_sepL_singleton
big_opL_singleton
.
}
by
rewrite
big_sepL_cons
big_opL_cons
-
IH
.
Qed
.
Lemma
big_sepL_later
Φ
l
:
▷
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_sepL_commute
_);
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepL_always
Φ
l
:
(
□
[
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
□
Φ
k
x
)
.
Proof
.
revert
Φ
.
induction
l
as
[|
x
l
IH
]=>
Φ
.
{
by
rewrite
!
big_sepL_nil
always_pure
.
}
by
rewrite
!
big_sepL_cons
always_sep
IH
.
Qed
.
Proof
.
apply
(
big_sepL_commute
_);
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepL_always_if
p
Φ
l
:
□
?p
([
★
list
]
k
↦
x
∈
l
,
Φ
k
x
)
⊣⊢
([
★
list
]
k
↦
x
∈
l
,
□
?p
Φ
k
x
)
.
...
...
@@ -430,21 +450,41 @@ Section gmap.
by
rewrite
IH
-!
assoc
(
assoc
_
(
Ψ
_
_))
[(
Ψ
_
_
★
_)
%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepM_later
Φ
m
:
▷
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
.
Lemma
big_sepM_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
m
:
Ψ
True
⊣⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
Φ
k
x
))
.
Proof
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
csimpl
;
rewrite
?later_True
//.
by
rewrite
later_sep
IH
.
intros
??
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepM_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
K
→
A
→
B
)
m
:
Ψ
∅
⊣⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
f
k
x
))
.
Proof
.
intros
??
.
rewrite
/
big_opM
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepM_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
K
→
A
→
B
)
m
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
m
≠
∅
→
Ψ
([
⋅
map
]
k
↦
x
∈
m
,
f
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
Ψ
(
f
k
x
))
.
Proof
.
rewrite
-
map_to_list_empty'
.
intros
??
.
rewrite
/
big_opM
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
[|
i'
x'
]
IH
];
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_sepM_later
Φ
m
:
▷
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
▷
Φ
k
x
)
.
Proof
.
apply
(
big_sepM_commute
_);
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepM_always
Φ
m
:
(
□
[
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
□
Φ
k
x
)
.
Proof
.
rewrite
/
uPred_big_sepM
.
induction
(
map_to_list
m
)
as
[|[
i
x
]
l
IH
];
csimpl
;
rewrite
?always_pure
//.
by
rewrite
always_sep
IH
.
Qed
.
Proof
.
apply
(
big_sepM_commute
_);
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepM_always_if
p
Φ
m
:
□
?p
([
★
map
]
k
↦
x
∈
m
,
Φ
k
x
)
⊣⊢
([
★
map
]
k
↦
x
∈
m
,
□
?p
Φ
k
x
)
.
...
...
@@ -569,20 +609,40 @@ Section gset.
by
rewrite
IH
-!
assoc
(
assoc
_
(
Ψ
_))
[(
Ψ
_
★
_)
%
I
]
comm
-!
assoc
.
Qed
.
Lemma
big_sepS_later
Φ
X
:
▷
([
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
▷
Φ
y
)
.
Lemma
big_sepS_commute
(
Ψ
:
uPred
M
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
Φ
X
:
Ψ
True
⊣⊢
True
→
(
∀
P
Q
,
Ψ
(
P
★
Q
)
⊣⊢
Ψ
P
★
Ψ
Q
)
→
Ψ
([
★
set
]
x
∈
X
,
Φ
x
)
⊣⊢
([
★
set
]
x
∈
X
,
Ψ
(
Φ
x
))
.
Proof
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
csimpl
;
first
by
rewrite
?later_True
.
by
rewrite
later_sep
IH
.
intros
??
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepS_always
Φ
X
:
□
([
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
□
Φ
y
)
.
Lemma
big_sepS_op_commute
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
A
→
B
)
X
:
Ψ
∅
⊣⊢
True
→
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
Ψ
([
⋅
set
]
x
∈
X
,
f
x
)
⊣⊢
([
★
set
]
x
∈
X
,
Ψ
(
f
x
))
.
Proof
.
rewrite
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
csimpl
;
first
by
rewrite
?always_pure
.
by
rewrite
always_sep
IH
.
intros
??
.
rewrite
/
big_opS
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
l
IH
];
rewrite
//=
-
?IH
;
auto
.
Qed
.
Lemma
big_sepS_op_commute1
{
B
:
ucmraT
}
(
Ψ
:
B
→
uPred
M
)
`{
!
Proper
((
≡
)
==>
(
≡
))
Ψ
}
(
f
:
A
→
B
)
X
:
(
∀
x
y
,
Ψ
(
x
⋅
y
)
⊣⊢
Ψ
x
★
Ψ
y
)
→
X
≢
∅
→
Ψ
([
⋅
set
]
x
∈
X
,
f
x
)
⊣⊢
([
★
set
]
x
∈
X
,
Ψ
(
f
x
))
.
Proof
.
rewrite
-
elements_empty'
.
intros
??
.
rewrite
/
big_opS
/
uPred_big_sepS
.
induction
(
elements
X
)
as
[|
x
[|
x'
l
]
IH
];
csimpl
in
*
;
rewrite
?right_id
-
?IH
//.
Qed
.
Lemma
big_sepS_later
Φ
X
:
▷
([
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
▷
Φ
y
)
.
Proof
.
apply
(
big_sepS_commute
_);
auto
using
later_True
,
later_sep
.
Qed
.
Lemma
big_sepS_always
Φ
X
:
□
([
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
□
Φ
y
)
.
Proof
.
apply
(
big_sepS_commute
_);
auto
using
always_pure
,
always_sep
.
Qed
.
Lemma
big_sepS_always_if
q
Φ
X
:
□
?q
([
★
set
]
y
∈
X
,
Φ
y
)
⊣⊢
([
★
set
]
y
∈
X
,
□
?q
Φ
y
)
.
Proof
.
destruct
q
;
simpl
;
auto
using
big_sepS_always
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment