Skip to content
Snippets Groups Projects
Commit 2a4e4330 authored by Dan Frumin's avatar Dan Frumin Committed by Robbert Krebbers
Browse files

Rename `big_sepL2_app_inv_2` -> `big_sepL2_app_inv`.

And shorten the proof.
parent cd8f3be9
No related branches found
No related tags found
No related merge requests found
......@@ -335,6 +335,16 @@ Section sep_list2.
[by rewrite left_id|by rewrite left_id|apply False_elim|].
by rewrite IH -assoc.
Qed.
Lemma big_sepL2_app_inv Φ l1 l2 l1' l2' :
length l1 = length l1'
([ list] ky1;y2 l1 ++ l2; l1' ++ l2', Φ k y1 y2) -∗
([ list] ky1;y2 l1; l1', Φ k y1 y2)
([ list] ky1;y2 l2; l2', Φ (length l1 + k)%nat y1 y2).
Proof.
revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] //= ?; simplify_eq.
- by rewrite left_id.
- by rewrite -assoc IH.
Qed.
Lemma big_sepL2_mono Φ Ψ l1 l2 :
( k y1 y2, l1 !! k = Some y1 l2 !! k = Some y2 Φ k y1 y2 Ψ k y1 y2)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment