Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Gaëtan Gilbert
Iris
Commits
2883e242
Commit
2883e242
authored
7 years ago
by
Janno
Committed by
Jacques-Henri Jourdan
7 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Prove `funbi_cofe`; create section for ofe & cofe.
parent
19d9973e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/bi/monfun.v
+46
-27
46 additions, 27 deletions
theories/bi/monfun.v
with
46 additions
and
27 deletions
theories/bi/monfun.v
+
46
−
27
View file @
2883e242
...
@@ -38,30 +38,49 @@ Proof.
...
@@ -38,30 +38,49 @@ Proof.
by
rewrite
{
1
}
/
dist
/=
/
funbi_dist
/=.
by
rewrite
{
1
}
/
dist
/=
/
funbi_dist
/=.
Qed
.
Qed
.
Definition
funbi_sig
{
I
B
}
(
P
:
funbi_ty
I
B
):
Section
Ofe_Cofe
.
sig
(
fun
f
:
I
-
c
>
B
=>
mono
(
bi_index_rel
I
)
f
)
:=
Context
{
I
:
bi_index
}
{
B
:
bi
}
.
exist
_
(
funbi_car
P
)
(
funbi_mono
P
)
.
Implicit
Types
i
:
I
.
Definition
sig_funbi
{
I
:
bi_index
}
{
B
:
bi
}
Implicit
Types
P
:
funbi_ty
I
B
.
(
P
:
sig
(
fun
f
:
I
-
c
>
B
=>
mono
(
bi_index_rel
I
)
f
)):
funbi_ty
I
B
:=
Definition
funbi_sig
P
:
FUN
(
proj1_sig
P
)
(
proj2_sig
P
)
.
sig
(
fun
f
:
I
-
c
>
B
=>
mono
(
bi_index_rel
I
)
f
)
:=
exist
_
(
funbi_car
P
)
(
funbi_mono
P
)
.
Lemma
funbi_sig_equiv
{
I
B
}:
∀
P
Q
:
funbi_ty
I
B
,
P
≡
Q
↔
funbi_sig
P
≡
funbi_sig
Q
.
Definition
sig_funbi
Proof
.
done
.
Qed
.
(
P'
:
sig
(
fun
f
:
I
-
c
>
B
=>
mono
(
bi_index_rel
I
)
f
)):
funbi_ty
I
B
:=
Lemma
funbi_sig_dist
{
I
B
}:
FUN
(
proj1_sig
P'
)
(
proj2_sig
P'
)
.
∀
n
,
∀
P
Q
:
funbi_ty
I
B
,
P
≡
{
n
}
≡
Q
↔
funbi_sig
P
≡
{
n
}
≡
funbi_sig
Q
.
Proof
.
done
.
Qed
.
Lemma
funbi_sig_equiv
:
∀
P
Q
,
P
≡
Q
↔
funbi_sig
P
≡
funbi_sig
Q
.
Lemma
funbi_sig_cancel
{
I
B
}:
Proof
.
done
.
Qed
.
∀
P
,
@
funbi_sig
I
B
(
sig_funbi
P
)
≡
P
.
Proof
.
intros
[
f
M
]
.
reflexivity
.
Qed
.
Lemma
funbi_sig_dist
:
∀
n
,
∀
P
Q
:
funbi_ty
I
B
,
P
≡
{
n
}
≡
Q
↔
funbi_sig
P
≡
{
n
}
≡
funbi_sig
Q
.
Definition
funbi_ofe_mixin
I
B
:
OfeMixin
(
funbi_ty
I
B
)
.
Proof
.
done
.
Qed
.
Proof
.
by
apply
(
iso_ofe_mixin
funbi_sig
funbi_sig_equiv
funbi_sig_dist
)
.
Qed
.
Definition
funbi_ofe_mixin
:
OfeMixin
(
funbi_ty
I
B
)
.
Canonical
Structure
funbi_ofe
I
B
:=
OfeT
(
funbi_ty
I
B
)
(
funbi_ofe_mixin
I
B
)
.
Proof
.
by
apply
(
iso_ofe_mixin
funbi_sig
funbi_sig_equiv
funbi_sig_dist
)
.
Qed
.
Canonical
Structure
funbi_ofe
:=
OfeT
(
funbi_ty
I
B
)
(
funbi_ofe_mixin
)
.
Instance
funbi_cofe
{
C
:
Cofe
B
}
{
limit_preserving_entails
:
∀
cP
cQ
:
chain
B
,
(
∀
n
,
cP
n
⊢
cQ
n
)
→
compl
cP
⊢
compl
cQ
}
:
Cofe
(
funbi_ofe
)
.
Proof
.
unshelve
refine
(
iso_cofe_subtype
(
A
:=
I
-
c
>
B
)
(
fun
f
=>
mono
(
bi_index_rel
I
)
f
)
(
@
FUN
_
_)
(
@
funbi_car
_
_)
_
_
_);
[
done
|
done
|]
.
intros
c
i
j
Hij
.
apply
limit_preserving_entails
.
intros
.
by
apply
funbi_mono
.
Qed
.
End
Ofe_Cofe
.
Inductive
funbi_entails
{
I
B
}
(
P1
P2
:
funbi_ty
I
B
)
:
Prop
:=
funbi_in_entails
:
(
∀
i
,
bi_entails
(
funbi_car
P1
i
)
(
funbi_car
P2
i
))
→
funbi_entails
P1
P2
.
Inductive
funbi_entails
{
I
B
}
(
P1
P2
:
funbi_ty
I
B
)
:
Prop
:=
funbi_in_entails
:
(
∀
i
,
bi_entails
(
funbi_car
P1
i
)
(
funbi_car
P2
i
))
→
funbi_entails
P1
P2
.
...
@@ -196,7 +215,7 @@ Local Definition unseal_eqs :=
...
@@ -196,7 +215,7 @@ Local Definition unseal_eqs :=
)
.
)
.
Lemma
funbi_mixin
I
B
:
Lemma
funbi_mixin
I
B
:
BiMixin
(
funbi_ofe_mixin
I
B
)
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
.
BiMixin
(
@
funbi_ofe_mixin
I
B
)
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
.
Proof
.
Proof
.
rewrite
!
unseal_eqs
.
rewrite
!
unseal_eqs
.
split
;
split
;
...
@@ -290,7 +309,7 @@ Admitted.
...
@@ -290,7 +309,7 @@ Admitted.
Canonical
Structure
funbi
I
B
:
bi
:=
Canonical
Structure
funbi
I
B
:
bi
:=
Bi
(
funbi_ty
I
B
)
funbi_dist
funbi_equiv
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
(
funbi_ofe_mixin
_
_)
(
funbi_mixin
_
_)
.
Bi
(
funbi_ty
I
B
)
funbi_dist
funbi_equiv
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
funbi_ofe_mixin
(
funbi_mixin
_
_)
.
Instance
funbi_affine
I
B
:
BiAffine
B
→
BiAffine
(
funbi
I
B
)
.
Instance
funbi_affine
I
B
:
BiAffine
B
→
BiAffine
(
funbi
I
B
)
.
Proof
.
split
=>
?
.
by
apply
affine
.
Qed
.
Proof
.
split
=>
?
.
by
apply
affine
.
Qed
.
...
@@ -354,7 +373,7 @@ Proof.
...
@@ -354,7 +373,7 @@ Proof.
intros
.
by
rewrite
funbi_mono
.
intros
.
by
rewrite
funbi_mono
.
Qed
.
Qed
.
Canonical
Structure
funsbi
I
(
B
:
sbi
)
:
sbi
:=
Canonical
Structure
funsbi
I
(
B
:
sbi
)
:
sbi
:=
Sbi
(
funbi_ty
I
B
)
funbi_dist
funbi_equiv
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
funbi_later
(
funbi_ofe_mixin
I
B
)
(
bi_bi_mixin
_)
(
funsbi_mixin
_
_)
.
Sbi
(
funbi_ty
I
B
)
funbi_dist
funbi_equiv
funbi_entails
funbi_emp
funbi_pure
funbi_and
funbi_or
funbi_impl
funbi_forall
funbi_exist
funbi_internal_eq
funbi_sep
funbi_wand
funbi_plainly
funbi_persistently
funbi_later
funbi_ofe_mixin
(
bi_bi_mixin
_)
(
funsbi_mixin
_
_)
.
Ltac
unseal
:=
rewrite
Ltac
unseal
:=
rewrite
/
(
@
sbi_except_0
(
funsbi
_
_))
/
(
@
sbi_except_0
(
funsbi
_
_))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment