Skip to content
Snippets Groups Projects
Commit 13d5ab4f authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'big_sepM2_lemmata' into 'master'

Add `big_sepM2_union_inv_*`.

See merge request iris/iris!690
parents 1b72a945 41306b35
No related branches found
No related tags found
No related merge requests found
......@@ -1926,6 +1926,35 @@ Section map2.
[ map] ky1;y2 m1;m2, Φ1 k y1 Φ2 k y2.
Proof. intros. apply wand_intro_r. by rewrite big_sepM2_sepM. Qed.
Lemma big_sepM2_union_inv_l (Φ : K A B PROP) m1 m2 m' :
m1 ## m2
([ map] kx;y (m1 m2);m', Φ k x y)
m1' m2', m' = m1' m2' m1' ## m2'
([ map] kx;y m1;m1', Φ k x y)
([ map] kx;y m2;m2', Φ k x y).
Proof.
revert m'. induction m1 as [|i x m1 ? IH] using map_ind;
intros m' ?; decompose_map_disjoint.
{ rewrite -(exist_intro ) -(exist_intro m') !left_id_L.
rewrite !pure_True //; last by apply map_disjoint_empty_l.
rewrite big_sepM2_empty !left_id //. }
rewrite -insert_union_l big_sepM2_delete_l; last by apply lookup_insert.
apply exist_elim=> y. apply pure_elim_l=> ?.
rewrite delete_insert; last by apply lookup_union_None.
rewrite IH //.
rewrite sep_exist_l. eapply exist_elim=> m1'.
rewrite sep_exist_l. eapply exist_elim=> m2'.
rewrite comm. apply wand_elim_l', pure_elim_l=> Hm'. apply pure_elim_l=> ?.
assert ((m1' m2') !! i = None) as [??]%lookup_union_None.
{ by rewrite -Hm' lookup_delete. }
apply wand_intro_l.
rewrite -(exist_intro (<[i:=y]> m1')) -(exist_intro m2'). apply and_intro.
{ apply pure_intro. by rewrite -insert_union_l -Hm' insert_delete insert_id. }
apply and_intro.
{ apply pure_intro. by apply map_disjoint_insert_l. }
by rewrite big_sepM2_insert // -assoc.
Qed.
Global Instance big_sepM2_empty_persistent Φ :
Persistent ([ map] ky1;y2 ; , Φ k y1 y2).
Proof. rewrite big_sepM2_empty. apply _. Qed.
......@@ -1951,6 +1980,20 @@ Section map2.
Proof. intros. rewrite big_sepM2_eq /big_sepM2_def. apply _. Qed.
End map2.
Lemma big_sepM2_union_inv_r `{Countable K} {A B}
(Φ : K A B PROP) (m1 m2 : gmap K B) (m' : gmap K A) :
m1 ## m2
([ map] kx;y m';(m1 m2), Φ k x y)
m1' m2', m' = m1' m2' m1' ## m2'
([ map] kx;y m1';m1, Φ k x y)
([ map] kx;y m2';m2, Φ k x y).
Proof.
intros Hm. rewrite -(big_sepM2_flip Φ).
rewrite (big_sepM2_union_inv_l (λ k (x : B) y, Φ k y x)) //.
f_equiv=>n1. f_equiv=>n2. f_equiv.
by rewrite -!(big_sepM2_flip Φ).
Qed.
Lemma big_sepM_sepM2_diag `{Countable K} {A} (Φ : K A A PROP) (m : gmap K A) :
([ map] ky m, Φ k y y) -∗
([ map] ky1;y2 m;m, Φ k y1 y2).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment