Skip to content
Snippets Groups Projects
Commit 12e75edb authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Internal fractional tweaks.

- Add `Params` instance and `Proper` instances
- Use `tc_opaque` to prevent `iFrame`/`iNext` from unfolding
- Use `∗-∗` in `iff` lemma to remove `BiAffine`.
parent 81f394da
No related branches found
No related tags found
No related merge requests found
......@@ -197,26 +197,40 @@ Section fractional.
Qed.
End fractional.
(** Marked [tc_opaque] instead [Typeclasses Opaque] so that you can use
[iDestruct] to eliminate and [iModIntro] to introduce [internal_fractional],
while still preventing [iFrame] and [iNext] from unfolding. *)
Definition internal_fractional {PROP : bi} (Φ : Qp PROP) : PROP :=
tc_opaque ( p q, Φ (p + q)%Qp ∗-∗ Φ p Φ q)%I.
Global Instance: Params (@internal_fractional) 1 := {}.
Section internal_fractional.
Context {PROP : bi}.
Implicit Types Φ Ψ : Qp PROP.
Implicit Types q : Qp.
Definition internal_fractional Φ
:= ( ( p q, Φ (p + q)%Qp ∗-∗ Φ p Φ q))%I.
Global Instance internal_fractional_ne n :
Proper (pointwise_relation _ (dist n) ==> dist n) (@internal_fractional PROP).
Proof. solve_proper. Qed.
Global Instance internal_fractional_proper :
Proper (pointwise_relation _ () ==> ()) (@internal_fractional PROP).
Proof. solve_proper. Qed.
Global Instance internal_fractional_affine Φ : Affine (internal_fractional Φ).
Proof. rewrite /internal_fractional /=. apply _. Qed.
Global Instance internal_fractional_persistent Φ :
Persistent (internal_fractional Φ) := _.
Persistent (internal_fractional Φ).
Proof. rewrite /internal_fractional /=. apply _. Qed.
Lemma fractional_internal_fractional Φ :
Fractional Φ internal_fractional Φ.
Proof.
intros frac.
iIntros "!>" (q1 q2).
rewrite [Φ (q1 + q2)%Qp]frac //=; auto.
intros. iIntros "!>" (q1 q2).
rewrite [Φ (q1 + q2)%Qp]fractional //=; auto.
Qed.
Lemma internal_fractional_iff `{!BiAffine PROP} Φ Ψ:
( q, Φ q Ψ q) internal_fractional Φ -∗ internal_fractional Ψ.
Lemma internal_fractional_iff Φ Ψ:
( q, Φ q ∗-∗ Ψ q) internal_fractional Φ -∗ internal_fractional Ψ.
Proof.
iIntros "#Hiff #HΦdup !>" (p q).
iSplit.
......
......@@ -35,7 +35,7 @@ Class rwlock `{!heapGS_gen hlc Σ} := RwLock {
(** * General properties of the predicates *)
is_rw_lock_persistent γ lk Φ :> Persistent (is_rw_lock γ lk Φ);
is_rw_lock_iff γ lk Φ Ψ :
is_rw_lock γ lk Φ -∗ ( q, Φ q Ψ q) -∗ is_rw_lock γ lk Ψ;
is_rw_lock γ lk Φ -∗ ( q, Φ q ∗-∗ Ψ q) -∗ is_rw_lock γ lk Ψ;
reader_locked_timeless γ q :> Timeless (reader_locked γ q);
writer_locked_timeless γ :> Timeless (writer_locked γ);
writer_locked_exclusive γ : writer_locked γ -∗ writer_locked γ -∗ False;
......@@ -63,4 +63,3 @@ Class rwlock `{!heapGS_gen hlc Σ} := RwLock {
{{{ RET #(); True }}};
}.
Global Hint Mode rwlock + + + : typeclass_instances.
......@@ -96,7 +96,7 @@ Section proof.
Qed.
Lemma is_rw_lock_iff γ lk Φ Ψ :
is_rw_lock γ lk Φ -∗ ( q, Φ q Ψ q) -∗ is_rw_lock γ lk Ψ.
is_rw_lock γ lk Φ -∗ ( q, Φ q ∗-∗ Ψ q) -∗ is_rw_lock γ lk Ψ.
Proof.
iIntros "[#HΦdup [%l [-> #Hlockinv]]] #Hiff".
unfold is_rw_lock.
......@@ -393,7 +393,7 @@ Section proof.
Qed.
End proof.
Program Definition rw_spin_lock `{!heapGS_gen hlc Σ, !rwlockG Σ} : rwlock :=
Definition rw_spin_lock `{!heapGS_gen hlc Σ, !rwlockG Σ} : rwlock :=
{| rw_lock.writer_locked_exclusive := writer_locked_exclusive;
rw_lock.writer_locked_not_reader_locked := writer_locked_not_reader_locked;
rw_lock.is_rw_lock_iff := is_rw_lock_iff;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment