Forked from
Iris / Iris
7304 commits behind the upstream repository.
-
Robbert Krebbers authored
With nicely overloaded notations for sets and maps.
Robbert Krebbers authoredWith nicely overloaded notations for sets and maps.
heap.v 8.83 KiB
From heap_lang Require Export lifting.
From algebra Require Import upred_big_op.
From program_logic Require Export invariants ghost_ownership.
From program_logic Require Import ownership auth.
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapRA := mapRA loc (exclRA (leibnizC val)).
Class HeapInG Σ (i : gid) := heap_inG :> InG heap_lang Σ i (authRA heapRA).
Instance heap_inG_auth `{HeapInG Σ i} : AuthInG heap_lang Σ i heapRA.
Proof. split; apply _. Qed.
Definition to_heap : state → heapRA := fmap Excl.
Definition of_heap : heapRA → state := omap (maybe Excl).
Definition heap_mapsto {Σ} (i : gid) `{HeapInG Σ i}
(γ : gname) (l : loc) (v : val) : iPropG heap_lang Σ :=
auth_own i γ {[ l ↦ Excl v ]}.
Definition heap_inv {Σ} (i : gid) `{HeapInG Σ i}
(h : heapRA) : iPropG heap_lang Σ := ownP (of_heap h).
Definition heap_ctx {Σ} (i : gid) `{HeapInG Σ i}
(γ : gname) (N : namespace) : iPropG heap_lang Σ := auth_ctx i γ N (heap_inv i).
Section heap.
Context {Σ : iFunctorG} (HeapI : gid) `{!HeapInG Σ HeapI}.
Implicit Types N : namespace.
Implicit Types P : iPropG heap_lang Σ.
Implicit Types σ : state.
Implicit Types h g : heapRA.
Implicit Types γ : gname.
(** Conversion to heaps and back *)
Global Instance of_heap_proper : Proper ((≡) ==> (=)) of_heap.
Proof. by intros ??; fold_leibniz=>->. Qed.
Lemma from_to_heap σ : of_heap (to_heap σ) = σ.
Proof.
apply map_eq=>l. rewrite lookup_omap lookup_fmap. by case (σ !! l).
Qed.
Lemma to_heap_valid σ : ✓ to_heap σ.
Proof. intros n l. rewrite lookup_fmap. by case (σ !! l). Qed.
Lemma of_heap_insert l v h : of_heap (<[l:=Excl v]> h) = <[l:=v]> (of_heap h).
Proof. by rewrite /of_heap -(omap_insert _ _ _ (Excl v)). Qed.
Lemma to_heap_insert l v σ : to_heap (<[l:=v]> σ) = <[l:=Excl v]> (to_heap σ).
Proof. by rewrite /to_heap -fmap_insert. Qed.
Lemma of_heap_None h l :
✓ h → of_heap h !! l = None → h !! l = None ∨ h !! l ≡ Some ExclUnit.
Proof.
move=> /(_ O l). rewrite /of_heap lookup_omap.
by case: (h !! l)=> [[]|]; auto.
Qed.
Lemma heap_singleton_inv_l h l v :
✓ ({[l ↦ Excl v]} ⋅ h) → h !! l = None ∨ h !! l ≡ Some ExclUnit.
Proof.
move=> /(_ O l). rewrite lookup_op lookup_singleton.
by case: (h !! l)=> [[]|]; auto.
Qed.
(** Propers *)
Global Instance heap_inv_proper : Proper ((≡) ==> (≡)) (heap_inv HeapI).
Proof. intros h1 h2. by fold_leibniz=> ->. Qed.
(** General properties of mapsto *)
Lemma heap_mapsto_disjoint γ l v1 v2 :
(heap_mapsto HeapI γ l v1 ★ heap_mapsto HeapI γ l v2)%I ⊑ False.
Proof.
rewrite /heap_mapsto -auto_own_op auto_own_valid map_op_singleton.
rewrite map_validI (forall_elim l) lookup_singleton.
by rewrite option_validI excl_validI.
Qed.
Lemma heap_alloc N σ :
ownP σ ⊑ pvs N N (∃ γ, heap_ctx HeapI γ N ∧ Π★{σ} heap_mapsto HeapI γ).
Proof.
rewrite -{1}(from_to_heap σ); etransitivity;
first apply (auth_alloc (ownP ∘ of_heap) N (to_heap σ)), to_heap_valid.
apply pvs_mono, exist_mono=> γ; apply and_mono_r.
induction σ as [|l v σ Hl IH] using map_ind.
{ rewrite big_sepM_empty; apply True_intro. }
rewrite to_heap_insert big_sepM_insert //.
rewrite (map_insert_singleton_op (to_heap σ));
last rewrite lookup_fmap Hl; auto.
by rewrite auto_own_op IH.
Qed.
(** Weakest precondition *)
Lemma wp_alloc N E γ e v P Q :
to_val e = Some v → nclose N ⊆ E →
P ⊑ heap_ctx HeapI γ N →
P ⊑ (▷ ∀ l, heap_mapsto HeapI γ l v -★ Q (LocV l)) →
P ⊑ wp E (Alloc e) Q.
Proof.
rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? Hctx HP.
transitivity (pvs E E (auth_own HeapI γ ∅ ★ P))%I.
{ by rewrite -pvs_frame_r -(auth_empty E γ) left_id. }
apply wp_strip_pvs, (auth_fsa (heap_inv HeapI) (wp_fsa (Alloc e)))
with N γ ∅; simpl; eauto with I.
apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc left_id; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite /wp_fsa -(wp_alloc_pst _ (of_heap h)) //.
apply sep_mono_r; rewrite HP; apply later_mono.
apply forall_mono=> l; apply wand_intro_l.
rewrite always_and_sep_l -assoc; apply const_elim_sep_l=> ?.
rewrite -(exist_intro (op {[ l ↦ Excl v ]})).
repeat erewrite <-exist_intro by apply _; simpl.
rewrite -of_heap_insert left_id right_id !assoc.
apply sep_mono_l.
rewrite -(map_insert_singleton_op h); last by apply of_heap_None.
rewrite const_equiv ?left_id; last by apply (map_insert_valid h).
apply later_intro.
Qed.
Lemma wp_load N E γ l v P Q :
nclose N ⊆ E →
P ⊑ heap_ctx HeapI γ N →
P ⊑ (heap_mapsto HeapI γ l v ★ ▷ (heap_mapsto HeapI γ l v -★ Q v)) →
P ⊑ wp E (Load (Loc l)) Q.
Proof.
rewrite /heap_ctx /heap_inv /heap_mapsto=>HN ? HPQ.
apply (auth_fsa' (heap_inv HeapI) (wp_fsa _) id)
with N γ {[ l ↦ Excl v ]}; simpl; eauto with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_load_pst _ (<[l:=v]>(of_heap h))) ?lookup_insert //.
rewrite const_equiv // left_id.
rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
rewrite -of_heap_insert.
apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Qed.
Lemma wp_store N E γ l v' e v P Q :
to_val e = Some v → nclose N ⊆ E →
P ⊑ heap_ctx HeapI γ N →
P ⊑ (heap_mapsto HeapI γ l v' ★
▷ (heap_mapsto HeapI γ l v -★ Q (LitV LitUnit))) →
P ⊑ wp E (Store (Loc l) e) Q.
Proof.
rewrite /heap_ctx /heap_inv /heap_mapsto=>? HN ? HPQ.
apply (auth_fsa' (heap_inv HeapI) (wp_fsa _) (alter (λ _, Excl v) l))
with N γ {[ l ↦ Excl v' ]}; simpl; eauto with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_store_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
rewrite /heap_inv alter_singleton insert_insert.
rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
rewrite -!of_heap_insert const_equiv;
last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
Qed.
Lemma wp_cas_fail N E γ l v' e1 v1 e2 v2 P Q :
to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 →
nclose N ⊆ E →
P ⊑ heap_ctx HeapI γ N →
P ⊑ (heap_mapsto HeapI γ l v' ★
▷ (heap_mapsto HeapI γ l v' -★ Q (LitV (LitBool false)))) →
P ⊑ wp E (Cas (Loc l) e1 e2) Q.
Proof.
rewrite /heap_ctx /heap_inv /heap_mapsto=>??? HN ? HPQ.
apply (auth_fsa' (heap_inv HeapI) (wp_fsa _) id)
with N γ {[ l ↦ Excl v' ]}; simpl; eauto 10 with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_cas_fail_pst _ (<[l:=v']>(of_heap h))) ?lookup_insert //.
rewrite const_equiv // left_id.
rewrite -(map_insert_singleton_op h); last by eapply heap_singleton_inv_l.
rewrite -of_heap_insert.
apply sep_mono_r, later_mono, wand_intro_l. by rewrite -later_intro.
Qed.
Lemma wp_cas_suc N E γ l e1 v1 e2 v2 P Q :
to_val e1 = Some v1 → to_val e2 = Some v2 →
nclose N ⊆ E →
P ⊑ heap_ctx HeapI γ N →
P ⊑ (heap_mapsto HeapI γ l v1 ★
▷ (heap_mapsto HeapI γ l v2 -★ Q (LitV (LitBool true)))) →
P ⊑ wp E (Cas (Loc l) e1 e2) Q.
Proof.
rewrite /heap_ctx /heap_inv /heap_mapsto=> ?? HN ? HPQ.
apply (auth_fsa' (heap_inv HeapI) (wp_fsa _) (alter (λ _, Excl v2) l))
with N γ {[ l ↦ Excl v1 ]}; simpl; eauto 10 with I.
rewrite HPQ{HPQ}; apply sep_mono_r, forall_intro=> h; apply wand_intro_l.
rewrite -assoc; apply const_elim_sep_l=> ?.
rewrite {1}[(▷ownP _)%I]pvs_timeless pvs_frame_r; apply wp_strip_pvs.
rewrite -(wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))) ?lookup_insert //.
rewrite /heap_inv alter_singleton insert_insert.
rewrite -!(map_insert_singleton_op h); try by eapply heap_singleton_inv_l.
rewrite -!of_heap_insert const_equiv;
last (split; [naive_solver|by eapply map_insert_valid, cmra_valid_op_r]).
apply sep_mono_r, later_mono, wand_intro_l. by rewrite left_id -later_intro.
Qed.
End heap.