Forked from
Iris / Iris
1042 commits behind the upstream repository.
heap_lang.v 14.32 KiB
From iris.base_logic.lib Require Import gen_inv_heap invariants.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.heap_lang Require Import lang adequacy total_adequacy proofmode notation.
(* Import lang *again*. This used to break notation. *)
From iris.heap_lang Require Import lang.
From iris.prelude Require Import options.
Unset Mangle Names.
Section tests.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Definition simpl_test :
⌜(10 = 4 + 6)%nat⌝ -∗
WP let: "x" := ref #1 in "x" <- !"x";; !"x" {{ v, ⌜v = #1⌝ }}.
Proof.
iIntros "?". wp_alloc l. repeat (wp_pure _) || wp_load || wp_store.
match goal with
| |- context [ (10 = 4 + 6)%nat ] => done
end.
Qed.
Definition val_scope_test_1 := SOMEV (#(), #()).
Definition heap_e : expr :=
let: "x" := ref #1 in "x" <- !"x" + #1 ;; !"x".
Check "heap_e_spec".
Lemma heap_e_spec E : ⊢ WP heap_e @ E {{ v, ⌜v = #2⌝ }}.
Proof.
iIntros "". rewrite /heap_e. Show.
wp_alloc l as "?". wp_pures. wp_bind (!_)%E. wp_load. Show. (* No fupd was added *)
wp_store. by wp_load.
Qed.
Definition heap_e2 : expr :=
let: "x" := ref #1 in
let: "y" := ref #1 in
"x" <- !"x" + #1 ;; !"x".
Check "heap_e2_spec".
Lemma heap_e2_spec E : ⊢ WP heap_e2 @ E [{ v, ⌜v = #2⌝ }].
Proof.
iIntros "". rewrite /heap_e2.
wp_alloc l as "Hl". Show. wp_alloc l'.
wp_pures. wp_bind (!_)%E. wp_load. Show. (* No fupd was added *)
wp_store. wp_load. done.
Qed.
Definition heap_e3 : expr :=
let: "x" := #true in
let: "f" := λ: "z", "z" + #1 in
if: "x" then "f" #0 else "f" #1.
Lemma heap_e3_spec E : ⊢ WP heap_e3 @ E [{ v, ⌜v = #1⌝ }].
Proof.
iIntros "". rewrite /heap_e3.
by repeat (wp_pure _).
Qed.
Definition heap_e4 : expr :=
let: "x" := (let: "y" := ref (ref #1) in ref "y") in
! ! !"x".
Lemma heap_e4_spec : ⊢ WP heap_e4 [{ v, ⌜ v = #1 ⌝ }].
Proof.
rewrite /heap_e4. wp_alloc l. wp_alloc l'.
wp_alloc l''. by repeat wp_load.
Qed.
Definition heap_e5 : expr :=
let: "x" := ref (ref #1) in ! ! "x" + FAA (!"x") (#10 + #1).
Lemma heap_e5_spec E : ⊢ WP heap_e5 @ E [{ v, ⌜v = #13⌝ }].
Proof.
rewrite /heap_e5. wp_alloc l. wp_alloc l'.
wp_load. wp_faa. do 2 wp_load. by wp_pures.
Qed.
Definition heap_e6 : val := λ: "v", "v" = "v".
Lemma heap_e6_spec (v : val) :
val_is_unboxed v → ⊢ WP heap_e6 v {{ w, ⌜ w = #true ⌝ }}.
Proof. intros ?. wp_lam. wp_op. by case_bool_decide. Qed.
Definition heap_e7 : val := λ: "v", CmpXchg "v" #0 #1.
Lemma heap_e7_spec_total l : l ↦ #0 -∗ WP heap_e7 #l [{_, l ↦ #1 }].
Proof. iIntros. wp_lam. wp_cmpxchg_suc. auto. Qed.
Check "heap_e7_spec".
Lemma heap_e7_spec l : ▷^2 l ↦ #0 -∗ WP heap_e7 #l {{_, l ↦ #1 }}.
Proof. iIntros. wp_lam. Show. wp_cmpxchg_suc. Show. auto. Qed.
Definition FindPred : val :=
rec: "pred" "x" "y" :=
let: "yp" := "y" + #1 in
if: "yp" < "x" then "pred" "x" "yp" else "y".
Definition Pred : val :=
λ: "x",
if: "x" ≤ #0 then -FindPred (-"x" + #2) #0 else FindPred "x" #0.
Lemma FindPred_spec n1 n2 E Φ :
(n1 < n2)%Z →
Φ #(n2 - 1) -∗ WP FindPred #n2 #n1 @ E [{ Φ }].
Proof.
iIntros (Hn) "HΦ".
iInduction (Z.gt_wf n2 n1) as [n1' _] "IH" forall (Hn).
wp_rec. wp_pures. case_bool_decide; wp_if.
- iApply ("IH" with "[%] [%] HΦ"); lia.
- by assert (n1' = n2 - 1)%Z as -> by lia.
Qed.
Lemma Pred_spec n E Φ : Φ #(n - 1) -∗ WP Pred #n @ E [{ Φ }].
Proof.
iIntros "HΦ". wp_lam.
wp_op. case_bool_decide.
- wp_smart_apply FindPred_spec; first lia. wp_pures.
by replace (n - 1)%Z with (- (-n + 2 - 1))%Z by lia.
- wp_smart_apply FindPred_spec; eauto with lia.
Qed.
Lemma Pred_user E :
⊢ WP let: "x" := Pred #42 in Pred "x" @ E [{ v, ⌜v = #40⌝ }].
Proof. iIntros "". wp_apply Pred_spec. by wp_smart_apply Pred_spec. Qed.
Definition Id : val :=
rec: "go" "x" :=
if: "x" = #0 then #() else "go" ("x" - #1).
(** These tests specially test the handling of the [vals_compare_safe]
side-condition of the [=] operator. *)
Lemma Id_wp (n : nat) : ⊢ WP Id #n {{ v, ⌜ v = #() ⌝ }}.
Proof.
iInduction n as [|n] "IH"; wp_rec; wp_pures; first done.
by replace (S n - 1)%Z with (n:Z) by lia.
Qed.
Lemma Id_twp (n : nat) : ⊢ WP Id #n [{ v, ⌜ v = #() ⌝ }].
Proof.
iInduction n as [|n] "IH"; wp_rec; wp_pures; first done.
by replace (S n - 1)%Z with (n:Z) by lia.
Qed.
(* Make sure [wp_bind] works even when it changes nothing. *)
Lemma wp_bind_nop (e : expr) :
⊢ WP e + #0 {{ _, True }}.
Proof. wp_bind (e + #0)%E. Abort.
Lemma wp_bind_nop (e : expr) :
⊢ WP e + #0 [{ _, True }].
Proof. wp_bind (e + #0)%E. Abort.
Check "wp_load_fail".
Lemma wp_load_fail :
⊢ WP Fork #() {{ _, True }}.
Proof. Fail wp_load. Abort.
Lemma twp_load_fail :
⊢ WP Fork #() [{ _, True }].
Proof. Fail wp_load. Abort.
Check "wp_load_no_ptsto".
Lemma wp_load_fail_no_ptsto (l : loc) :
⊢ WP ! #l {{ _, True }}.
Proof. Fail wp_load. Abort.
Check "wp_store_fail".
Lemma wp_store_fail :
⊢ WP Fork #() {{ _, True }}.
Proof. Fail wp_store. Abort.
Lemma twp_store_fail :
⊢ WP Fork #() [{ _, True }].
Proof. Fail wp_store. Abort.
Check "wp_store_no_ptsto".
Lemma wp_store_fail_no_ptsto (l : loc) :
⊢ WP #l <- #0 {{ _, True }}.
Proof. Fail wp_store. Abort.
Check "(t)wp_bind_fail".
Lemma wp_bind_fail : ⊢ WP of_val #() {{ v, True }}.
Proof. Fail wp_bind (!_)%E. Abort.
Lemma twp_bind_fail : ⊢ WP of_val #() [{ v, True }].
Proof. Fail wp_bind (!_)%E. Abort.
Lemma wp_apply_evar e P :
P -∗ (∀ Q Φ, Q -∗ WP e {{ Φ }}) -∗ WP e {{ _, True }}.
Proof. iIntros "HP HW". wp_apply "HW". iExact "HP". Qed.
Lemma wp_pures_val (b : bool) :
⊢ WP of_val #b {{ _, True }}.
Proof. wp_pures. done. Qed.
Lemma twp_pures_val (b : bool) :
⊢ WP of_val #b [{ _, True }].
Proof. wp_pures. done. Qed.
Lemma wp_cmpxchg l v :
val_is_unboxed v →
l ↦ v -∗ WP CmpXchg #l v v {{ _, True }}.
Proof.
iIntros (?) "?". wp_cmpxchg as ? | ?; done.
Qed.
Lemma wp_xchg l (v₁ v₂ : val) :
{{{ l ↦ v₁ }}}
Xchg #l v₂
{{{ RET v₁; l ↦ v₂ }}}.
Proof.
iIntros (Φ) "Hl HΦ".
wp_xchg.
iApply "HΦ" => //.
Qed.
Lemma twp_xchg l (v₁ v₂ : val) :
l ↦ v₁ -∗
WP Xchg #l v₂ [{ v₁, l ↦ v₂ }].
Proof.
iIntros "Hl".
wp_xchg => //.
Qed.
Lemma wp_xchg_inv N l (v : val) :
{{{ inv N (∃ v, l ↦ v) }}}
Xchg #l v
{{{ v', RET v'; True }}}.
Proof.
iIntros (Φ) "Hl HΦ".
iInv "Hl" as (v') "Hl" "Hclose".
wp_xchg.
iApply "HΦ".
iApply "Hclose".
iExists _ => //.
Qed.
Lemma wp_alloc_split :
⊢ WP Alloc #0 {{ _, True }}.
Proof. wp_alloc l as "[Hl1 Hl2]". Show. done. Qed.
Lemma wp_alloc_drop :
⊢ WP Alloc #0 {{ _, True }}.
Proof. wp_alloc l as "_". Show. done. Qed.
Check "wp_nonclosed_value".
Lemma wp_nonclosed_value :
⊢ WP let: "x" := #() in (λ: "y", "x")%V #() {{ _, True }}.
Proof. wp_let. wp_lam. Fail wp_pure _. Show. Abort.
Lemma wp_alloc_array n :
(0 < n)%Z →
⊢ {{{ True }}}
AllocN #n #0
{{{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0 }}}.
Proof.
iIntros (? Φ) "!> _ HΦ".
wp_alloc l as "?"; first done.
by iApply "HΦ".
Qed.
Lemma twp_alloc_array n :
(0 < n)%Z →
⊢ [[{ True }]]
AllocN #n #0
[[{ l, RET #l; l ↦∗ replicate (Z.to_nat n) #0 }]].
Proof.
iIntros (? Φ) "!> _ HΦ".
wp_alloc l as "?"; first done. Show.
by iApply "HΦ".
Qed.
Lemma wp_load_array l :
{{{ l ↦∗ [ #0;#1;#2 ] }}} !(#l +ₗ #1) {{{ RET #1; True }}}.
Proof.
iIntros (Φ) "Hl HΦ". wp_op.
wp_apply (wp_load_offset _ _ _ _ 1 with "Hl"); first done.
iIntros "Hl". by iApply "HΦ".
Qed.
Check "test_array_fraction_destruct".
Lemma test_array_fraction_destruct l vs :
l ↦∗ vs -∗ l ↦∗{#1/2} vs ∗ l ↦∗{#1/2} vs.
Proof.
iIntros "[Hl1 Hl2]". Show.
by iFrame.
Qed.
Lemma test_array_fraction_combine l vs :
l ↦∗{#1/2} vs -∗ l↦∗{#1/2} vs -∗ l ↦∗ vs.
Proof.
iIntros "Hl1 Hl2".
iSplitL "Hl1"; by iFrame.
Qed.
Lemma test_array_app l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗ (vs1 ++ vs2).
Proof.
iIntros "H". iDestruct (array_app with "H") as "[H1 H2]".
iApply array_app. iSplitL "H1"; done.
Qed.
Lemma test_array_app_split l vs1 vs2 :
l ↦∗ (vs1 ++ vs2) -∗ l ↦∗{#1/2} (vs1 ++ vs2).
Proof.
iIntros "[$ _]". (* splits the fraction, not the app *)
Qed.
Lemma test_wp_free l v :
{{{ l ↦ v }}} Free #l {{{ RET #(); True }}}.
Proof.
iIntros (Φ) "Hl HΦ". wp_free. iApply "HΦ". done.
Qed.
Lemma test_twp_free l v :
[[{ l ↦ v }]] Free #l [[{ RET #(); True }]].
Proof.
iIntros (Φ) "Hl HΦ". wp_free. iApply "HΦ". done.
Qed.
Check "test_wp_finish_fupd".
Lemma test_wp_finish_fupd (v : val) :
⊢ WP of_val v {{ v, |={⊤}=> True }}.
Proof.
wp_pures. Show. (* No second fupd was added. *)
Abort.
Check "test_twp_finish_fupd".
Lemma test_twp_finish_fupd (v : val) :
⊢ WP of_val v [{ v, |={⊤}=> True }].
Proof.
wp_pures. Show. (* No second fupd was added. *)
Abort.
Check "test_heaplang_not_unfolded".
Lemma test_heaplang_not_unfolded :
⊢@{iPropI Σ} |={⊤}=> True.
Proof.
cbn.
Set Printing All.
Show.
Unset Printing All.
Abort.
Check "test_wp_pure_credit_succeed".
Lemma test_wp_pure_credit_succeed :
⊢ WP #42 + #420 {{ v, True }}.
Proof.
wp_pure as "Hcred". Show. done.
Qed.
Check "test_wp_pure_credit_fail".
Lemma test_wp_pure_credit_fail :
⊢ True -∗ WP #42 + #420 {{ v, True }}.
Proof.
iIntros "Hcred".
Fail wp_pure as "Hcred".
Abort.
Check "test_wp_pure_credits_lb_succeed".
Lemma test_wp_pure_credits_lb_succeed n :
⊢ steps_lb n -∗ WP #42 + #420 {{ v, True }}.
Proof.
iIntros "Hlb".
wp_pure with "Hlb" as "Hcred". Show. done.
Qed.
Check "test_wp_pure_credits_lb_fail1".
Lemma test_wp_pure_credits_lb_fail1 n :
⊢ steps_lb n -∗ WP #42 + #420 {{ v, True }}.
Proof.
iIntros "Hlb".
Fail wp_pure with "Hl" as "Hcred".
Abort.
Check "test_wp_pure_credits_lb_fail2".
Lemma test_wp_pure_credits_lb_fail2 n :
⊢ steps_lb n -∗ WP #42 + #420 {{ v, True }}.
Proof.
iIntros "Hlb".
Fail wp_pure with "Hlb" as "Hlb".
Abort.
End tests.
Section mapsto_tests.
Context `{!heapGS Σ}.
(* Test that the different versions of mapsto work with the tactics, parses,
and prints correctly. *)
(* Loading from a persistent points-to predicate in the _persistent_ context. *)
Lemma persistent_mapsto_load_persistent l v :
{{{ l ↦□ v }}} ! #l {{{ RET v; True }}}.
Proof. iIntros (Φ) "#Hl HΦ". Show. wp_load. by iApply "HΦ". Qed.
(* Loading from a persistent points-to predicate in the _spatial_ context. *)
Lemma persistent_mapsto_load_spatial l v :
{{{ l ↦□ v }}} ! #l {{{ RET v; True }}}.
Proof. iIntros (Φ) "Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_mapsto_twp_load_persistent l v :
[[{ l ↦□ v }]] ! #l [[{ RET v; True }]].
Proof. iIntros (Φ) "#Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_mapsto_twp_load_spatial l v :
[[{ l ↦□ v }]] ! #l [[{ RET v; True }]].
Proof. iIntros (Φ) "Hl HΦ". wp_load. by iApply "HΦ". Qed.
Lemma persistent_mapsto_load l (n : nat) :
{{{ l ↦ #n }}} Store #l (! #l + #5) ;; ! #l {{{ RET #(n + 5); l ↦□ #(n + 5) }}}.
Proof.
iIntros (Φ) "Hl HΦ".
wp_load. wp_store.
iMod (mapsto_persist with "Hl") as "#Hl".
wp_load. by iApply "HΦ".
Qed.
(* Loading from the general mapsto for any [dfrac]. *)
Lemma general_mapsto dq l v :
[[{ l ↦{dq} v }]] ! #l [[{ RET v; True }]].
Proof.
iIntros (Φ) "Hl HΦ". Show. wp_load. by iApply "HΦ".
Qed.
(* Make sure that we can split a mapsto containing an evar. *)
Lemma mapsto_evar_iSplit l v :
l ↦{#1 / 2} v -∗ ∃ q, l ↦{#1 / 2 + q} v.
Proof. iIntros "H". iExists _. iSplitL; first by iAssumption. Abort.
Lemma mapsto_frame_1 l v q1 q2 :
l ↦{#q1} v -∗ l ↦{#q2} v -∗ l ↦{#q1 + q2} v.
Proof. iIntros "H1 H2". iFrame "H1". iExact "H2". Qed.
Lemma mapsto_frame_2 l v q :
l ↦{#q/2} v -∗ l ↦{#q/2} v -∗ l ↦{#q} v.
Proof. iIntros "H1 H2". iFrame "H1". iExact "H2". Qed.
End mapsto_tests.
Section inv_mapsto_tests.
Context `{!heapGS Σ}.
(* Make sure these parse and type-check. *)
Lemma inv_mapsto_own_test (l : loc) : ⊢ l ↦_(λ _, True) #5. Abort.
Lemma inv_mapsto_test (l : loc) : ⊢ l ↦_(λ _, True) □. Abort.
(* Make sure [setoid_rewrite] works. *)
Lemma inv_mapsto_setoid_rewrite (l : loc) (I : val → Prop) :
(∀ v, I v ↔ I #true) →
⊢ l ↦_(λ v, I v) □.
Proof.
iIntros (Heq). setoid_rewrite Heq. Show.
Abort.
End inv_mapsto_tests.
Section atomic.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
(* These tests check if a side-condition for [Atomic] is generated *)
Check "wp_iMod_fupd_atomic".
Lemma wp_iMod_fupd_atomic E1 E2 P :
(|={E1,E2}=> P) -∗ WP #() #() @ E1 {{ _, True }}.
Proof.
iIntros "H". iMod "H". Show.
Abort.
Check "wp_iInv_atomic".
Lemma wp_iInv_atomic N E P :
↑ N ⊆ E →
inv N P -∗ WP #() #() @ E {{ _, True }}.
Proof.
iIntros (?) "H". iInv "H" as "H" "Hclose". Show.
Abort.
Check "wp_iInv_atomic_acc".
Lemma wp_iInv_atomic_acc N E P :
↑ N ⊆ E →
inv N P -∗ WP #() #() @ E {{ _, True }}.
Proof.
(* Test if a side-condition for [Atomic] is generated *)
iIntros (?) "H". iInv "H" as "H". Show.
Abort.
End atomic.
Section error_tests.
Context `{!heapGS Σ}.
Check "not_cmpxchg".
Lemma not_cmpxchg :
⊢ WP #() #() {{ _, True }}.
Proof.
Fail wp_cmpxchg_suc.
Abort.
End error_tests.
(* Test a closed proof *)
Lemma heap_e_adequate σ : adequate NotStuck heap_e σ (λ v _, v = #2).
Proof. eapply (heap_adequacy heapΣ). iIntros (?) "_". by iApply heap_e_spec. Qed.
Lemma heap_e_totally_adequate σ : sn erased_step ([heap_e], σ).
Proof.
eapply (heap_total heapΣ NotStuck _ _ (const True)).
iIntros (?) "_". rewrite /heap_e /=.
wp_alloc l. wp_load. wp_store. wp_load. auto.
Qed.