Forked from
Iris / Iris
3875 commits behind the upstream repository.
atomic.v 20.51 KiB
From iris.bi Require Export bi updates laterable.
From iris.bi.lib Require Import fixpoint.
From stdpp Require Import coPset namespaces.
From iris.proofmode Require Import coq_tactics tactics reduction.
Set Default Proof Using "Type".
(** Conveniently split a conjunction on both assumption and conclusion. *)
Local Tactic Notation "iSplitWith" constr(H) :=
iApply (bi.and_parallel with H); iSplit; iIntros H.
Section definition.
Context `{BiFUpd PROP} {TA TB : tele}.
Implicit Types
(Eo Ei : coPset) (* outer/inner masks *)
(α : TA → PROP) (* atomic pre-condition *)
(P : PROP) (* abortion condition *)
(β : TA → TB → PROP) (* atomic post-condition *)
(Φ : TA → TB → PROP) (* post-condition *)
.
(** atomic_acc as the "introduction form" of atomic updates: An accessor
that can be aborted back to [P]. *)
Definition atomic_acc Eo Ei α P β Φ : PROP :=
(|={Eo, Ei}=> ∃.. x, α x ∗
((α x ={Ei, Eo}=∗ P) ∧ (∀.. y, β x y ={Ei, Eo}=∗ Φ x y))
)%I.
Lemma atomic_acc_wand Eo Ei α P1 P2 β Φ1 Φ2 :
((P1 -∗ P2) ∧ (∀.. x y, Φ1 x y -∗ Φ2 x y)) -∗
(atomic_acc Eo Ei α P1 β Φ1 -∗ atomic_acc Eo Ei α P2 β Φ2).
Proof.
iIntros "HP12 AS". iMod "AS" as (x) "[Hα Hclose]".
iModIntro. iExists x. iFrame "Hα". iSplit.
- iIntros "Hα". iDestruct "Hclose" as "[Hclose _]".
iApply "HP12". iApply "Hclose". done.
- iIntros (y) "Hβ". iDestruct "Hclose" as "[_ Hclose]".
iApply "HP12". iApply "Hclose". done.
Qed.
Lemma atomic_acc_mask Eo Ed α P β Φ :
atomic_acc Eo (Eo∖Ed) α P β Φ ⊣⊢ ∀ E, ⌜Eo ⊆ E⌝ → atomic_acc E (E∖Ed) α P β Φ.
Proof.
iSplit; last first.
{ iIntros "Hstep". iApply ("Hstep" with "[% //]"). }
iIntros "Hstep" (E HE).
iApply (fupd_mask_frame_acc with "Hstep"); first done.
iIntros "Hstep". iDestruct "Hstep" as (x) "[Hα Hclose]".
iIntros "!> Hclose'".
iExists x. iFrame. iSplitWith "Hclose".
- iIntros "Hα". iApply "Hclose'". iApply "Hclose". done.
- iIntros (y) "Hβ". iApply "Hclose'". iApply "Hclose". done.
Qed.
Lemma atomic_acc_mask_weaken Eo1 Eo2 Ei α P β Φ :
Eo1 ⊆ Eo2 →
atomic_acc Eo1 Ei α P β Φ -∗ atomic_acc Eo2 Ei α P β Φ.
Proof.
iIntros (HE) "Hstep".
iMod fupd_intro_mask' as "Hclose1"; first done.
iMod "Hstep" as (x) "[Hα Hclose2]". iIntros "!>". iExists x.
iFrame. iSplitWith "Hclose2".
- iIntros "Hα". iMod ("Hclose2" with "Hα") as "$". done.
- iIntros (y) "Hβ". iMod ("Hclose2" with "Hβ") as "$". done.
Qed.
(** atomic_update as a fixed-point of the equation
AU = make_laterable $ atomic_acc α AU β Q
*)
Context Eo Ei α β Φ.
Definition atomic_update_pre (Ψ : () → PROP) (_ : ()) : PROP :=
make_laterable $ atomic_acc Eo Ei α (Ψ ()) β Φ.
Local Instance atomic_update_pre_mono : BiMonoPred atomic_update_pre.
Proof.
constructor.
- iIntros (P1 P2) "#HP12". iIntros ([]) "AU".
iApply (make_laterable_wand with "[] AU").
iIntros "!# AA". iApply (atomic_acc_wand with "[HP12] AA").
iSplit; last by eauto. iApply "HP12".
- intros ??. solve_proper.
Qed.
Definition atomic_update_def :=
bi_greatest_fixpoint atomic_update_pre ().
End definition.
(** Seal it *)
Definition atomic_update_aux : seal (@atomic_update_def). by eexists. Qed.
Definition atomic_update `{BiFUpd PROP} {TA TB : tele} := atomic_update_aux.(unseal) PROP _ TA TB.
Definition atomic_update_eq :
@atomic_update = @atomic_update_def := atomic_update_aux.(seal_eq).
Arguments atomic_acc {PROP _ TA TB} Eo Ei _ _ _ _ : simpl never.
Arguments atomic_update {PROP _ TA TB} Eo Ei _ _ _ : simpl never.
(** Notation: Atomic updates *)
Notation "'AU' '<<' ∀ x1 .. xn , α '>>' @ Eo , Ei '<<' ∃ y1 .. yn , β , 'COMM' Φ '>>'" :=
(atomic_update (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
Eo Ei
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, α%I) ..)
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn,
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, β%I) .. )
) .. )
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn,
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, Φ%I) .. )
) .. )
)
(at level 20, Eo, Ei, α, β, Φ at level 200, x1 binder, xn binder, y1 binder, yn binder,
format "'[ ' 'AU' '<<' ∀ x1 .. xn , α '>>' '/' @ Eo , Ei '/' '[ ' '<<' ∃ y1 .. yn , β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AU' '<<' ∀ x1 .. xn , α '>>' @ Eo , Ei '<<' β , 'COMM' Φ '>>'" :=
(atomic_update (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleO)
Eo Ei
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, α%I) ..)
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, tele_app (TT:=TeleO) β%I) .. )
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, tele_app (TT:=TeleO) Φ%I) .. )
)
(at level 20, Eo, Ei, α, β, Φ at level 200, x1 binder, xn binder,
format "'[ ' 'AU' '<<' ∀ x1 .. xn , α '>>' '/' @ Eo , Ei '/' '[ ' '<<' β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AU' '<<' α '>>' @ Eo , Ei '<<' ∃ y1 .. yn , β , 'COMM' Φ '>>'" :=
(atomic_update (TA:=TeleO)
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
Eo Ei
(tele_app (TT:=TeleO) α%I)
(tele_app (TT:=TeleO) $
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, β%I) ..))
(tele_app (TT:=TeleO) $
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, Φ%I) ..))
)
(at level 20, Eo, Ei, α, β, Φ at level 200, y1 binder, yn binder,
format "'[ ' 'AU' '<<' α '>>' '/' @ Eo , Ei '/' '[ ' '<<' ∃ y1 .. yn , β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AU' '<<' α '>>' @ Eo , Ei '<<' β , 'COMM' Φ '>>'" :=
(atomic_update (TA:=TeleO) (TB:=TeleO) Eo Ei
(tele_app (TT:=TeleO) α%I)
(tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) β%I)
(tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) Φ%I)
)
(at level 20, Eo, Ei, α, β, Φ at level 200,
format "'[ ' 'AU' '<<' α '>>' '/' @ Eo , Ei '/' '[ ' '<<' β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
(** Notation: Atomic accessors *)
Notation "'AACC' '<<' ∀ x1 .. xn , α 'ABORT' P '>>' @ Eo , Ei '<<' ∃ y1 .. yn , β , 'COMM' Φ '>>'" :=
(atomic_acc (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
Eo Ei
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, α%I) ..)
P%I
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn,
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, β%I) .. )
) .. )
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn,
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, Φ%I) .. )
) .. )
)
(at level 20, Eo, Ei, α, P, β, Φ at level 200, x1 binder, xn binder, y1 binder, yn binder,
format "'[ ' 'AACC' '[ ' '<<' ∀ x1 .. xn , α '/' ABORT P '>>' ']' '/' @ Eo , Ei '/' '[ ' '<<' ∃ y1 .. yn , β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AACC' '<<' ∀ x1 .. xn , α 'ABORT' P '>>' @ Eo , Ei '<<' β , 'COMM' Φ '>>'" :=
(atomic_acc (TA:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. ))
(TB:=TeleO)
Eo Ei
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, α%I) ..)
P%I
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, tele_app (TT:=TeleO) β%I) .. )
(tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $
λ x1, .. (λ xn, tele_app (TT:=TeleO) Φ%I) .. )
)
(at level 20, Eo, Ei, α, P, β, Φ at level 200, x1 binder, xn binder,
format "'[ ' 'AACC' '[ ' '<<' ∀ x1 .. xn , α '/' ABORT P '>>' ']' '/' @ Eo , Ei '/' '[ ' '<<' β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AACC' '<<' α 'ABORT' P '>>' @ Eo , Ei '<<' ∃ y1 .. yn , β , 'COMM' Φ '>>'" :=
(atomic_acc (TA:=TeleO)
(TB:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
Eo Ei
(tele_app (TT:=TeleO) α%I)
P%I
(tele_app (TT:=TeleO) $
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, β%I) ..))
(tele_app (TT:=TeleO) $
tele_app (TT:=TeleS (λ y1, .. (TeleS (λ yn, TeleO)) .. ))
(λ y1, .. (λ yn, Φ%I) ..))
)
(at level 20, Eo, Ei, α, P, β, Φ at level 200, y1 binder, yn binder,
format "'[ ' 'AACC' '[ ' '<<' α '/' ABORT P '>>' ']' '/' @ Eo , Ei '/' '[ ' '<<' ∃ y1 .. yn , β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
Notation "'AACC' '<<' α 'ABORT' P '>>' @ Eo , Ei '<<' β , 'COMM' Φ '>>'" :=
(atomic_acc (TA:=TeleO)
(TB:=TeleO)
Eo Ei
(tele_app (TT:=TeleO) α%I)
P%I
(tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) β%I)
(tele_app (TT:=TeleO) $ tele_app (TT:=TeleO) Φ%I)
)
(at level 20, Eo, Ei, α, P, β, Φ at level 200,
format "'[ ' 'AACC' '[ ' '<<' α '/' ABORT P '>>' ']' '/' @ Eo , Ei '/' '[ ' '<<' β , '/' COMM Φ '>>' ']' ']'") : bi_scope.
(** Lemmas about AU *)
Section lemmas.
Context `{BiFUpd PROP} {TA TB : tele}.
Implicit Types (α : TA → PROP) (β Φ : TA → TB → PROP) (P : PROP).
Local Existing Instance atomic_update_pre_mono.
Global Instance atomic_acc_ne Eo Ei n :
Proper (
pointwise_relation TA (dist n) ==>
dist n ==>
pointwise_relation TA (pointwise_relation TB (dist n)) ==>
pointwise_relation TA (pointwise_relation TB (dist n)) ==>
dist n
) (atomic_acc (PROP:=PROP) Eo Ei).
Proof. solve_proper. Qed.
Global Instance atomic_update_ne Eo Ei n :
Proper (
pointwise_relation TA (dist n) ==>
pointwise_relation TA (pointwise_relation TB (dist n)) ==>
pointwise_relation TA (pointwise_relation TB (dist n)) ==>
dist n
) (atomic_update (PROP:=PROP) Eo Ei).
Proof.
rewrite atomic_update_eq /atomic_update_def /atomic_update_pre. solve_proper.
Qed.
(** The ellimination form: an atomic accessor *)
Lemma aupd_aacc Eo Ei α β Φ :
atomic_update Eo Ei α β Φ -∗
atomic_acc Eo Ei α (atomic_update Eo Ei α β Φ) β Φ.
Proof using Type*.
rewrite atomic_update_eq {1}/atomic_update_def /=. iIntros "HUpd".
iPoseProof (greatest_fixpoint_unfold_1 with "HUpd") as "HUpd".
iApply make_laterable_elim. done.
Qed.
(* This lets you eliminate atomic updates with iMod. *)
Global Instance elim_mod_aupd φ Eo Ei E α β Φ Q Q' :
(∀ R, ElimModal φ false false (|={E,Ei}=> R) R Q Q') →
ElimModal (φ ∧ Eo ⊆ E) false false
(atomic_update Eo Ei α β Φ)
(∃.. x, α x ∗
(α x ={Ei,E}=∗ atomic_update Eo Ei α β Φ) ∧
(∀.. y, β x y ={Ei,E}=∗ Φ x y))
Q Q'.
Proof.
intros ?. rewrite /ElimModal /= =>-[??]. iIntros "[AU Hcont]".
iPoseProof (aupd_aacc with "AU") as "AC".
iMod (atomic_acc_mask_weaken with "AC"); first done.
iApply "Hcont". done.
Qed.
Global Instance aupd_laterable Eo Ei α β Φ :
Laterable (atomic_update Eo Ei α β Φ).
Proof.
rewrite atomic_update_eq {1}/atomic_update_def greatest_fixpoint_unfold.
apply _.
Qed.
Lemma aupd_intro P Q α β Eo Ei Φ :
Affine P → Persistent P → Laterable Q →
(P ∗ Q -∗ atomic_acc Eo Ei α Q β Φ) →
P ∗ Q -∗ atomic_update Eo Ei α β Φ.
Proof.
rewrite atomic_update_eq {1}/atomic_update_def /=.
iIntros (??? HAU) "[#HP HQ]".
iApply (greatest_fixpoint_coind _ (λ _, Q)); last done. iIntros "!#" ([]) "HQ".
iApply (make_laterable_intro with "[] HQ"). iIntros "!# >HQ".
iApply HAU. by iFrame.
Qed.
Lemma aacc_intro Eo Ei α P β Φ :
Ei ⊆ Eo → (∀.. x, α x -∗
((α x ={Eo}=∗ P) ∧ (∀.. y, β x y ={Eo}=∗ Φ x y)) -∗
atomic_acc Eo Ei α P β Φ)%I.
Proof.
iIntros (? x) "Hα Hclose".
iMod fupd_intro_mask' as "Hclose'"; last iModIntro; first set_solver.
iExists x. iFrame. iSplitWith "Hclose".
- iIntros "Hα". iMod "Hclose'" as "_". iApply "Hclose". done.
- iIntros (y) "Hβ". iMod "Hclose'" as "_". iApply "Hclose". done.
Qed.
(* This lets you open invariants etc. when the goal is an atomic accessor. *)
Global Instance elim_acc_aacc {X} E1 E2 Ei (α' β' : X → PROP) γ' α β Pas Φ :
ElimAcc (X:=X) (fupd E1 E2) (fupd E2 E1) α' β' γ'
(atomic_acc E1 Ei α Pas β Φ)
(λ x', atomic_acc E2 Ei α (β' x' ∗ (γ' x' -∗? Pas))%I β
(λ.. x y, β' x' ∗ (γ' x' -∗? Φ x y))
)%I.
Proof.
rewrite /ElimAcc.
(* FIXME: Is there any way to prevent maybe_wand from unfolding?
It gets unfolded by env_cbv in the proofmode, ideally we'd like that
to happen only if one argument is a constructor. *)
iIntros "Hinner >Hacc". iDestruct "Hacc" as (x') "[Hα' Hclose]".
iMod ("Hinner" with "Hα'") as (x) "[Hα Hclose']".
iMod (fupd_intro_mask') as "Hclose''"; last iModIntro; first done.
iExists x. iFrame. iSplitWith "Hclose'".
- iIntros "Hα". iMod "Hclose''" as "_".
iMod ("Hclose'" with "Hα") as "[Hβ' HPas]".
iMod ("Hclose" with "Hβ'") as "Hγ'".
iModIntro. destruct (γ' x'); iApply "HPas"; done.
- iIntros (y) "Hβ". iMod "Hclose''" as "_".
iMod ("Hclose'" with "Hβ") as "Hβ'".
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
rewrite ->!tele_app_bind. iDestruct "Hβ'" as "[Hβ' HΦ]".
iMod ("Hclose" with "Hβ'") as "Hγ'".
iModIntro. destruct (γ' x'); iApply "HΦ"; done.
Qed.
(* Everything that fancy updates can eliminate without changing, atomic
accessors can eliminate as well. This is a forwarding instance needed becuase
atomic_acc is becoming opaque. *)
Global Instance elim_modal_acc p q φ P P' Eo Ei α Pas β Φ :
(∀ Q, ElimModal φ p q P P' (|={Eo,Ei}=> Q) (|={Eo,Ei}=> Q)) →
ElimModal φ p q P P'
(atomic_acc Eo Ei α Pas β Φ)
(atomic_acc Eo Ei α Pas β Φ).
Proof. intros Helim. apply Helim. Qed.
Lemma aacc_aacc {TA' TB' : tele} E1 E1' E2 E3
α P β Φ
(α' : TA' → PROP) P' (β' Φ' : TA' → TB' → PROP) :
E1' ⊆ E1 →
atomic_acc E1' E2 α P β Φ -∗
(∀.. x, α x -∗ atomic_acc E2 E3 α' (α x ∗ (P ={E1}=∗ P')) β'
(λ.. x' y', (α x ∗ (P ={E1}=∗ Φ' x' y'))
∨ ∃.. y, β x y ∗ (Φ x y ={E1}=∗ Φ' x' y'))) -∗
atomic_acc E1 E3 α' P' β' Φ'.
Proof.
iIntros (?) "Hupd Hstep".
iMod (atomic_acc_mask_weaken with "Hupd") as (x) "[Hα Hclose]"; first done.
iMod ("Hstep" with "Hα") as (x') "[Hα' Hclose']".
iModIntro. iExists x'. iFrame "Hα'". iSplit.
- iIntros "Hα'". iDestruct "Hclose'" as "[Hclose' _]".
iMod ("Hclose'" with "Hα'") as "[Hα Hupd]".
iDestruct "Hclose" as "[Hclose _]".
iMod ("Hclose" with "Hα"). iApply "Hupd". auto.
- iIntros (y') "Hβ'". iDestruct "Hclose'" as "[_ Hclose']".
iMod ("Hclose'" with "Hβ'") as "Hres".
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
rewrite ->!tele_app_bind. iDestruct "Hres" as "[[Hα HΦ']|Hcont]".
+ (* Abort the step we are eliminating *)
iDestruct "Hclose" as "[Hclose _]".
iMod ("Hclose" with "Hα") as "HP".
iApply "HΦ'". done.
+ (* Complete the step we are eliminating *)
iDestruct "Hclose" as "[_ Hclose]".
iDestruct "Hcont" as (y) "[Hβ HΦ']".
iMod ("Hclose" with "Hβ") as "HΦ".
iApply "HΦ'". done.
Qed.
Lemma aacc_aupd {TA' TB' : tele} E1 E1' E2 E3
α β Φ
(α' : TA' → PROP) P' (β' Φ' : TA' → TB' → PROP) :
E1' ⊆ E1 →
atomic_update E1' E2 α β Φ -∗
(∀.. x, α x -∗ atomic_acc E2 E3 α' (α x ∗ (atomic_update E1' E2 α β Φ ={E1}=∗ P')) β'
(λ.. x' y', (α x ∗ (atomic_update E1' E2 α β Φ ={E1}=∗ Φ' x' y'))
∨ ∃.. y, β x y ∗ (Φ x y ={E1}=∗ Φ' x' y'))) -∗
atomic_acc E1 E3 α' P' β' Φ'.
Proof.
iIntros (?) "Hupd Hstep". iApply (aacc_aacc with "[Hupd] Hstep"); first done.
iApply aupd_aacc; done.
Qed.
Lemma aacc_aupd_commit {TA' TB' : tele} E1 E1' E2 E3
α β Φ
(α' : TA' → PROP) P' (β' Φ' : TA' → TB' → PROP) :
E1' ⊆ E1 →
atomic_update E1' E2 α β Φ -∗
(∀.. x, α x -∗ atomic_acc E2 E3 α' (α x ∗ (atomic_update E1' E2 α β Φ ={E1}=∗ P')) β'
(λ.. x' y', ∃.. y, β x y ∗ (Φ x y ={E1}=∗ Φ' x' y'))) -∗
atomic_acc E1 E3 α' P' β' Φ'.
Proof.
iIntros (?) "Hupd Hstep". iApply (aacc_aupd with "Hupd"); first done.
iIntros (x) "Hα". iApply atomic_acc_wand; last first.
{ iApply "Hstep". done. }
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
iSplit; first by eauto. iIntros (??) "?". rewrite ->!tele_app_bind. by iRight.
Qed.
Lemma aacc_aupd_abort {TA' TB' : tele} E1 E1' E2 E3
α β Φ
(α' : TA' → PROP) P' (β' Φ' : TA' → TB' → PROP) :
E1' ⊆ E1 →
atomic_update E1' E2 α β Φ -∗
(∀.. x, α x -∗ atomic_acc E2 E3 α' (α x ∗ (atomic_update E1' E2 α β Φ ={E1}=∗ P')) β'
(λ.. x' y', α x ∗ (atomic_update E1' E2 α β Φ ={E1}=∗ Φ' x' y'))) -∗
atomic_acc E1 E3 α' P' β' Φ'.
Proof.
iIntros (?) "Hupd Hstep". iApply (aacc_aupd with "Hupd"); first done.
iIntros (x) "Hα". iApply atomic_acc_wand; last first.
{ iApply "Hstep". done. }
(* FIXME: Using ssreflect rewrite does not work, see Coq bug #7773. *)
iSplit; first by eauto. iIntros (??) "?". rewrite ->!tele_app_bind. by iLeft.
Qed.
End lemmas.
(** ProofMode support for atomic updates *)
Section proof_mode.
Context `{BiFUpd PROP} {TA TB : tele}.
Implicit Types (α : TA → PROP) (β Φ : TA → TB → PROP) (P : PROP).
Lemma tac_aupd_intro Γp Γs n α β Eo Ei Φ P :
Timeless (PROP:=PROP) emp →
TCForall Laterable (env_to_list Γs) →
P = prop_of_env Γs →
envs_entails (Envs Γp Γs n) (atomic_acc Eo Ei α P β Φ) →
envs_entails (Envs Γp Γs n) (atomic_update Eo Ei α β Φ).
Proof.
intros ? HΓs ->. rewrite envs_entails_eq of_envs_eq' /atomic_acc /=.
setoid_rewrite prop_of_env_sound =>HAU.
apply aupd_intro; [apply _..|]. done.
Qed.
End proof_mode.
(** Now the coq-level tactics *)
Tactic Notation "iAuIntro" :=
iStartProof; eapply tac_aupd_intro; [
iSolveTC || fail "iAuIntro: emp is not timeless"
| iSolveTC || fail "iAuIntro: not all spatial assumptions are laterable"
| (* P = ...: make the P pretty *) pm_reflexivity
| (* the new proof mode goal *) ].
Tactic Notation "iAaccIntro" "with" constr(sel) :=
iStartProof; lazymatch goal with
| |- environments.envs_entails _ (@atomic_acc ?PROP ?H ?TA ?TB ?Eo ?Ei ?α ?P ?β ?Φ) =>
iApply (@aacc_intro PROP H TA TB Eo Ei α P β Φ with sel);
first try solve_ndisj; last iSplit
| _ => fail "iAAccIntro: Goal is not an atomic accessor"
end.
(* From here on, prevent TC search from implicitly unfolding these. *)
Typeclasses Opaque atomic_acc atomic_update.