Skip to content
Snippets Groups Projects

Formalize pRTA from "Critical Instant for Probabilistic Timing Guarantees: Refuted and Revisited"

Open Sergey Bozhko requested to merge pRTA into main
Files
40
+ 29
0
@@ -61,6 +61,14 @@ Section ConditionalMeasure.
Definition restrict : measure Ω :=
mkDistrib Ω pmf_restricted pmf_nonnegative pmf_sums_to_1.
Remark pmf_restricted_pred :
forall ω, pmf_restricted ω > 0 -> S ω.
Proof.
clear; intros; unfold pmf_restricted in *.
destruct (S ω) eqn: => //.
by apply Rlt_irrefl in H.
Qed.
End ConditionalMeasure.
(* -------------------------------------------------------------------------- *)
@@ -231,6 +239,27 @@ Section BasicLemmas.
by apply pr_cond_eq_cond.
Qed.
Lemma pr_cond_eq_pred_0 :
forall {Ω} (μ : measure Ω) (A B : pred Ω) ρ,
(forall ω, B ω -> ~~ A ω) ->
<μ, ρ>{[ A | B ]} = 0.
Proof.
intros * NE; apply pr_zero => ω POS.
apply/negP/negP; apply: NE.
by apply pmf_restricted_pred in POS.
Qed.
Lemma pr_cond_mono_pred :
forall {Ω} (μ : measure Ω) (P Q C : pred Ω) ρ1 ρ2,
(forall ω : Ω, C ω -> P ω Q ω)
<μ, ρ1>{[ P | C ]} <= <μ, ρ2>{[ Q | C ]}.
Proof.
intros * IMP.
erewrite cond_prob_posprob_irrelevance; rewrite /pr_cond; apply pr_mono_pred_pos.
move=> ω POS ; apply IMP => //.
by apply pmf_restricted_pred in POS.
Qed.
(** This is a technical lemma that can be skipped. Intuitively, it
states that if we consider only those outcomes in the _product_
_space_ where the first component belongs to [B] (i.e., product
Loading