Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
ProBsa
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RT-PROOFS
ProBsa
Commits
d44f7537
Commit
d44f7537
authored
1 year ago
by
Sergey Bozhko
Browse files
Options
Downloads
Patches
Plain Diff
clean up in [⪯]-relation file
parent
62bf82de
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
probability/cdf.v
+2
-0
2 additions, 0 deletions
probability/cdf.v
probability/dominance_relation.v
+30
-25
30 additions, 25 deletions
probability/dominance_relation.v
with
32 additions
and
25 deletions
probability/cdf.v
+
2
−
0
View file @
d44f7537
...
...
@@ -10,6 +10,8 @@ Local Open Scope nat_scope.
Definition
cdf
{
Ω
}
{
μ
:
measure
Ω
}
(
X
:
nrvar
μ
)
(
x
:
nat
)
:=
ℙ
<
μ
>
{[
X
⟨
<=
⟩
x
]}
.
Notation
"'𝔽<' μ '>{[' X ']}(' x ')'"
:=
(
@
cdf
_
μ
X
x
)
(
at
level
10
,
format
"𝔽< μ >{[ X ]}( x )"
)
:
probability_scope
.
Notation
"'𝔽<' μ '>{[' X ']}'"
:=
(
@
cdf
_
μ
X
)
(
at
level
10
,
format
"𝔽< μ >{[ X ]}"
)
:
probability_scope
.
(* --------------------------------- Lemmas --------------------------------- *)
Lemma
cdf_nonnegative
:
...
...
This diff is collapsed.
Click to expand it.
probability/dominance_relation.v
+
30
−
25
View file @
d44f7537
...
...
@@ -13,12 +13,35 @@ Notation "X ⪯ Y" := (dominates X Y) (at level 55) : probability_scope.
(* -------------------------------- Instances -------------------------------- *)
(** * Instances *)
(** ** [nat -> R] vs [nat -> R] *)
(** Given two functions [f] and [g], we say that [f ⪯ g] iff the graph
of [f] is always _above_ the [g]'s graph. That is, [∀ x, f(x) ≥
g(x)]. *)
Definition
le_func
(
f
g
:
nat
->
R
)
:=
forall
n
,
f
n
>=
g
n
.
Instance
dominance_func
:
DominanceRelation
(
nat
->
R
)
(
nat
->
R
)
:=
{
dominates
:=
le_func
}
.
Lemma
func_dom_refl
:
forall
(
f
:
nat
->
R
),
f
⪯
f
.
Proof
.
by
intros
*
?;
apply
Rge_refl
.
Qed
.
Lemma
func_dom_trans
:
forall
(
f
g
h
:
nat
->
R
),
f
⪯
g
->
g
⪯
h
->
f
⪯
h
.
Proof
.
by
intros
*
LE1
LE2
n
;
eapply
Rge_trans
with
(
r2
:=
g
n
)
.
Qed
.
(** ** [nrvar] vs [nrvar] *)
(** Given two random variables [X] and [Y], we say that [X ⪯ Y] iff
[X]'s CDF is always _above_ [Y]'s CDF. That is, [∀ n, 𝔽[X](n) ≥
𝔽[Y](n)]. *)
Definition
le_nrvar
{
XΩ
YΩ
}
{
μX
:
measure
XΩ
}
{
μY
:
measure
YΩ
}
(
X
:
nrvar
μX
)
(
Y
:
nrvar
μY
)
:=
forall
n
,
𝔽
<
μX
>
{[
X
]}
(
n
)
>=
𝔽
<
μY
>
{[
Y
]}
(
n
)
.
𝔽
<
μX
>
{[
X
]}
⪯
𝔽
<
μY
>
{[
Y
]}
.
Instance
dominance_nrvar
:
forall
{
ΩX
ΩY
}
{
μX
:
measure
ΩX
}
{
μY
:
measure
ΩY
},
...
...
@@ -45,7 +68,7 @@ Qed.
[f : ℝ → [0,1]], we say that [X ⪯ f] iff [X]'s CDF is always
_above_ [f]. That is, [∀ x, 𝔽[X](x) ≥ f x]. *)
Definition
le_nrvar_func
{
Ω
}
{
μ
:
measure
Ω
}
(
X
:
nrvar
μ
)
(
f
:
nat
->
R
)
:=
forall
x
,
𝔽
<
μ
>
{[
X
]}
(
x
)
>=
f
x
.
𝔽
<
μ
>
{[
X
]}
⪯
f
.
Instance
dominance_nrvar_funct
:
forall
{
Ω
}
{
μ
:
measure
Ω
},
DominanceRelation
(
nrvar
μ
)
(
nat
->
R
)
:=
...
...
@@ -57,10 +80,14 @@ Instance nat_etimervar_pred_ltop :
forall
{
Ω
}
{
μ
:
measure
Ω
},
LtOp
nat
(
rvar
μ
[
eqType
of
etime
])
(
pred
Ω
)
:=
{
lt_op
t
X
:=
fun
ω
=>
exceeds
(
X
ω
)
t
}
.
Definition
le_etime_rvar
{
XΩ
YΩ
}
{
μX
:
measure
XΩ
}
{
μY
:
measure
YΩ
}
(
X
:
rvar
μX
[
eqType
of
etime
])
(
Y
:
rvar
μY
[
eqType
of
etime
])
:=
forall
(
t
:
nat
),
ℙ
<
μX
>
{[
t
⟨
<
⟩
X
]}
<=
ℙ
<
μY
>
{[
t
⟨
<
⟩
Y
]}
.
Instance
dominance_etime_rvar
:
forall
{
ΩX
ΩY
}
{
μX
:
measure
ΩX
}
{
μY
:
measure
ΩY
},
DominanceRelation
(
rvar
μX
[
eqType
of
etime
])
(
rvar
μY
[
eqType
of
etime
])
:=
{
dominates
X
Y
:=
forall
(
t
:
nat
),
ℙ
<
μX
>
{[
t
⟨
<
⟩
X
]}
<=
ℙ
<
μY
>
{[
t
⟨
<
⟩
Y
]}
}
.
{
dominates
:=
le_etime_rvar
}
.
Lemma
etime_dom_refl
:
∀
{
Ω
}
{
μ
:
measure
Ω
}
(
X
:
rvar
μ
[
eqType
of
etime
]),
...
...
@@ -73,25 +100,3 @@ Lemma etime_dom_trans :
forall
{
ZΩ
}
{
μZ
:
measure
ZΩ
}
(
Z
:
rvar
μZ
[
eqType
of
etime
]),
X
⪯
Y
→
Y
⪯
Z
→
X
⪯
Z
.
Proof
.
by
intros
*
NEQ1
NEQ2
t
;
specialize
(
NEQ1
t
);
specialize
(
NEQ2
t
);
nra
.
Qed
.
(** ** [nat -> R] vs [nat -> R] *)
(** Given two functions [f] and [g], we say that [f ⪯ g] iff the graph
of [f] is always _above_ the [g]'s graph. That is, [∀ x, f(x) ≥
g(x)]. *)
Definition
le_n2r
(
f
g
:
nat
->
R
)
:=
forall
x
,
f
x
>=
g
x
.
Instance
dominance_n2r
:
DominanceRelation
(
nat
->
R
)
(
nat
->
R
)
:=
{
dominates
:=
le_n2r
}
.
Lemma
n2r_dom_refl
:
forall
(
f
:
nat
->
R
),
f
⪯
f
.
Proof
.
by
intros
*
?;
apply
Rge_refl
.
Qed
.
Lemma
n2r_dom_trans
:
forall
(
f
g
h
:
nat
->
R
),
f
⪯
g
->
g
⪯
h
->
f
⪯
h
.
Proof
.
by
intros
*
LE1
LE2
x
;
eapply
Rge_trans
with
(
r2
:=
g
(
x
))
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment