Skip to content
Snippets Groups Projects
Commit 6b3ce6a7 authored by Michael Sammler's avatar Michael Sammler
Browse files

more lemmas and fixes

parent 253c7428
No related tags found
No related merge requests found
...@@ -320,6 +320,13 @@ Qed. ...@@ -320,6 +320,13 @@ Qed.
Lemma bv_signed_N_0 (b : bv 0): Lemma bv_signed_N_0 (b : bv 0):
bv_signed b = 0. bv_signed b = 0.
Proof. unfold bv_signed. by rewrite bv_unsigned_N_0, bv_swrap_0. Qed. Proof. unfold bv_signed. by rewrite bv_unsigned_N_0, bv_swrap_0. Qed.
Lemma bv_of_Z_checked_bv_unsigned n (b : bv n):
bv_of_Z_checked n (bv_unsigned b) = Some b.
Proof.
unfold bv_of_Z_checked. case_option_guard.
- f_equal. by apply bv_eq.
- by pose proof bv_is_wf b.
Qed.
Global Program Instance bv_eq_dec n : EqDecision (bv n) := λ '(BV _ v1 p1) '(BV _ v2 p2), Global Program Instance bv_eq_dec n : EqDecision (bv n) := λ '(BV _ v1 p1) '(BV _ v2 p2),
...@@ -330,13 +337,8 @@ Global Program Instance bv_eq_dec n : EqDecision (bv n) := λ '(BV _ v1 p1) '(BV ...@@ -330,13 +337,8 @@ Global Program Instance bv_eq_dec n : EqDecision (bv n) := λ '(BV _ v1 p1) '(BV
Next Obligation. intros. subst. rewrite (proof_irrel p1 p2). exact eq_refl. Defined. Next Obligation. intros. subst. rewrite (proof_irrel p1 p2). exact eq_refl. Defined.
Next Obligation. intros. by injection. Qed. Next Obligation. intros. by injection. Qed.
Global Program Instance bv_countable n : Countable (bv n) := Global Instance bv_countable n : Countable (bv n) :=
inj_countable bv_unsigned (bv_of_Z_checked n) _. inj_countable bv_unsigned (bv_of_Z_checked n) (bv_of_Z_checked_bv_unsigned n).
Next Obligation.
intros n x. pose proof bv_is_wf x.
unfold bv_of_Z_checked. case_option_guard; [|done].
f_equal. by apply bv_eq.
Qed.
Global Program Instance bv_finite n : Finite (bv n) := Global Program Instance bv_finite n : Finite (bv n) :=
{| enum := bv_of_Z n <$> (seqZ 0 (bv_modulus n)) |}. {| enum := bv_of_Z n <$> (seqZ 0 (bv_modulus n)) |}.
...@@ -466,6 +468,7 @@ Program Definition bv_0 (n : N) := ...@@ -466,6 +468,7 @@ Program Definition bv_0 (n : N) :=
Next Obligation. Next Obligation.
intros n. apply bv_wf_in_range. split; [done| apply bv_modulus_pos]. intros n. apply bv_wf_in_range. split; [done| apply bv_modulus_pos].
Qed. Qed.
Global Instance bv_inhabited n : Inhabited (bv n) := populate (bv_0 n).
Definition bv_succ {n} (x : bv n) : bv n := Definition bv_succ {n} (x : bv n) : bv n :=
bv_of_Z n (Z.succ (bv_unsigned x)). bv_of_Z n (Z.succ (bv_unsigned x)).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment