Skip to content
Snippets Groups Projects
Commit 3165a4c5 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Use new set notation for multisets in tests.

parent 5d8dd980
No related branches found
No related tags found
No related merge requests found
......@@ -27,48 +27,45 @@ Section test.
2 < multiplicity x X X Y 1 < multiplicity x Y.
Proof. multiset_solver. Qed.
Lemma test_multiplicity_2 x X :
2 < multiplicity x X {[ x ]} {[ x ]} {[ x ]} X.
2 < multiplicity x X {[ x ;+ x ;+ x ]} X.
Proof. multiset_solver. Qed.
Lemma test_multiplicity_3 x X :
multiplicity x X < 3 {[ x ]} {[ x ]} {[ x ]} X.
multiplicity x X < 3 {[ x ;+ x ;+ x ]} X.
Proof. multiset_solver. Qed.
Lemma test_elem_of_1 x X : x X {[x]} X.
Proof. multiset_solver. Qed.
Lemma test_elem_of_2 x X : x X {[x]} X.
Proof. multiset_solver. Qed.
Lemma test_elem_of_3 x y X : x y x X y X {[x]} {[y]} X.
Lemma test_elem_of_3 x y X : x y x X y X {[x ;+ y]} X.
Proof. multiset_solver. Qed.
Lemma test_elem_of_4 x y X Y : x y x X y Y {[x]} {[y]} X Y.
Lemma test_elem_of_4 x y X Y : x y x X y Y {[x ;+ y]} X Y.
Proof. multiset_solver. Qed.
Lemma test_elem_of_5 x y X Y : x y x X y Y {[x]} (X Y) {[ y ]}.
Proof. multiset_solver. Qed.
Lemma test_elem_of_6 x y X : {[x]} {[y]} X x X y X.
Lemma test_elem_of_6 x y X : {[x ;+ y]} X x X y X.
Proof. multiset_solver. Qed.
Lemma test_big_1 x1 x2 x3 x4 :
{[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]} ⊆@{gmultiset A}
{[ x1 ]} {[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]}.
{[ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ]} ⊆@{gmultiset A}
{[ x1 ;+ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ]}.
Proof. multiset_solver. Qed.
Lemma test_big_2 x1 x2 x3 x4 X :
2 multiplicity x4 X
{[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]} ⊆@{gmultiset A}
{[ x1 ]} {[ x1 ]} {[ x2 ]} {[ x3 ]} X.
{[ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ]} ⊆@{gmultiset A}
{[ x1 ;+ x1 ;+ x2 ;+ x3 ]} X.
Proof. multiset_solver. Qed.
Lemma test_big_3 x1 x2 x3 x4 X :
4 multiplicity x4 X
{[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]}
{[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]}
{[ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ;+ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ]}
⊆@{gmultiset A}
{[ x1 ]} {[ x1 ]} {[ x2 ]} {[ x3 ]}
{[ x1 ]} {[ x1 ]} {[ x2 ]} {[ x3 ]} X.
{[ x1 ;+ x1 ;+ x2 ;+ x3 ;+ x1 ;+ x1 ;+ x2 ;+ x3 ]} X.
Proof. multiset_solver. Qed.
Lemma test_big_4 x1 x2 x3 x4 x5 x6 x7 x8 x9 :
{[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]}
{[ x5 ]} {[ x6 ]} {[ x7 ]} {[ x8 ]} {[ x8 ]} {[ x9 ]}
{[ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ;+ x5 ;+ x6 ;+ x7 ;+ x8 ;+ x8 ;+ x9 ]}
⊆@{gmultiset A}
{[ x1 ]} {[ x1 ]} {[ x2 ]} {[ x3 ]} {[ x4 ]} {[ x4 ]}
{[ x5 ]} {[ x5 ]} {[ x6 ]} {[ x7 ]} {[ x9 ]} {[ x8 ]} {[ x8 ]}.
{[ x1 ;+ x1 ;+ x2 ;+ x3 ;+ x4 ;+ x4 ;+
x5 ;+ x5 ;+ x6 ;+ x7 ;+ x9 ;+ x8 ;+ x8 ]}.
Proof. multiset_solver. Qed.
Lemma test_firstorder_1 (P : A Prop) x X :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment