Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yixuan Chen
Iris
Commits
f3ff3b28
Commit
f3ff3b28
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
More uPred properties.
parent
621ef791
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modures/logic.v
+8
-0
8 additions, 0 deletions
modures/logic.v
with
8 additions
and
0 deletions
modures/logic.v
+
8
−
0
View file @
f3ff3b28
...
@@ -453,6 +453,8 @@ Lemma const_elim_l φ Q R : (φ → Q ⊑ R) → (■ φ ∧ Q) ⊑ R.
...
@@ -453,6 +453,8 @@ Lemma const_elim_l φ Q R : (φ → Q ⊑ R) → (■ φ ∧ Q) ⊑ R.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_elim_r
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
Q
∧
■
φ
)
⊑
R
.
Lemma
const_elim_r
φ
Q
R
:
(
φ
→
Q
⊑
R
)
→
(
Q
∧
■
φ
)
⊑
R
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Proof
.
intros
;
apply
const_elim
with
φ
;
eauto
.
Qed
.
Lemma
const_equiv
(
φ
:
Prop
)
:
φ
→
(
■
φ
:
uPred
M
)
%
I
≡
True
%
I
.
Proof
.
intros
;
apply
(
anti_symmetric
_);
auto
using
const_intro
.
Qed
.
Lemma
equiv_eq
{
A
:
cofeT
}
P
(
a
b
:
A
)
:
a
≡
b
→
P
⊑
(
a
≡
b
)
.
Lemma
equiv_eq
{
A
:
cofeT
}
P
(
a
b
:
A
)
:
a
≡
b
→
P
⊑
(
a
≡
b
)
.
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
)
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
)
.
...
@@ -524,6 +526,12 @@ Global Instance or_comm : Commutative (≡) (@uPred_or M).
...
@@ -524,6 +526,12 @@ Global Instance or_comm : Commutative (≡) (@uPred_or M).
Proof
.
intros
P
Q
;
apply
(
anti_symmetric
(
⊑
));
auto
.
Qed
.
Proof
.
intros
P
Q
;
apply
(
anti_symmetric
(
⊑
));
auto
.
Qed
.
Global
Instance
or_assoc
:
Associative
(
≡
)
(
@
uPred_or
M
)
.
Global
Instance
or_assoc
:
Associative
(
≡
)
(
@
uPred_or
M
)
.
Proof
.
intros
P
Q
R
;
apply
(
anti_symmetric
(
⊑
));
auto
.
Qed
.
Proof
.
intros
P
Q
R
;
apply
(
anti_symmetric
(
⊑
));
auto
.
Qed
.
Global
Instance
True_impl
:
LeftId
(
≡
)
True
%
I
(
@
uPred_impl
M
)
.
Proof
.
intros
P
;
apply
(
anti_symmetric
(
⊑
))
.
*
by
rewrite
-
(
left_id
True
%
I
uPred_and
(_
→
_)
%
I
)
impl_elim_r
.
*
by
apply
impl_intro_l
;
rewrite
left_id
.
Qed
.
Lemma
or_and_l
P
Q
R
:
(
P
∨
Q
∧
R
)
%
I
≡
((
P
∨
Q
)
∧
(
P
∨
R
))
%
I
.
Lemma
or_and_l
P
Q
R
:
(
P
∨
Q
∧
R
)
%
I
≡
((
P
∨
Q
)
∧
(
P
∨
R
))
%
I
.
Proof
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
first
auto
.
apply
(
anti_symmetric
(
⊑
));
first
auto
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment