Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yixuan Chen
Iris
Commits
edfd4f51
Commit
edfd4f51
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Rename sts -> stsT.
parent
b7cf62fd
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/sts.v
+5
-5
5 additions, 5 deletions
algebra/sts.v
program_logic/sts.v
+3
-3
3 additions, 3 deletions
program_logic/sts.v
with
8 additions
and
8 deletions
algebra/sts.v
+
5
−
5
View file @
edfd4f51
...
@@ -7,7 +7,7 @@ Local Arguments unit _ _ !_ /.
...
@@ -7,7 +7,7 @@ Local Arguments unit _ _ !_ /.
Module
sts
.
Module
sts
.
Record
S
ts
:=
{
Record
s
ts
T
:=
STS
{
state
:
Type
;
state
:
Type
;
token
:
Type
;
token
:
Type
;
trans
:
relation
state
;
trans
:
relation
state
;
...
@@ -16,14 +16,14 @@ Record Sts := {
...
@@ -16,14 +16,14 @@ Record Sts := {
(* The type of bounds we can give to the state of an STS. This is the type
(* The type of bounds we can give to the state of an STS. This is the type
that we equip with an RA structure. *)
that we equip with an RA structure. *)
Inductive
bound
(
sts
:
S
ts
)
:=
Inductive
bound
(
sts
:
s
ts
T
)
:=
|
bound_auth
:
state
sts
→
set
(
token
sts
)
→
bound
sts
|
bound_auth
:
state
sts
→
set
(
token
sts
)
→
bound
sts
|
bound_frag
:
set
(
state
sts
)
→
set
(
token
sts
)
→
bound
sts
.
|
bound_frag
:
set
(
state
sts
)
→
set
(
token
sts
)
→
bound
sts
.
Arguments
bound_auth
{_}
_
_
.
Arguments
bound_auth
{_}
_
_
.
Arguments
bound_frag
{_}
_
_
.
Arguments
bound_frag
{_}
_
_
.
Section
sts_core
.
Section
sts_core
.
Context
(
sts
:
S
ts
)
.
Context
(
sts
:
s
ts
T
)
.
Infix
"≼"
:=
dra_included
.
Infix
"≼"
:=
dra_included
.
Notation
state
:=
(
state
sts
)
.
Notation
state
:=
(
state
sts
)
.
...
@@ -239,7 +239,7 @@ Qed.
...
@@ -239,7 +239,7 @@ Qed.
End
sts_core
.
End
sts_core
.
Section
stsRA
.
Section
stsRA
.
Context
(
sts
:
S
ts
)
.
Context
(
sts
:
s
ts
T
)
.
Canonical
Structure
RA
:=
validityRA
(
bound
sts
)
.
Canonical
Structure
RA
:=
validityRA
(
bound
sts
)
.
Definition
auth
(
s
:
state
sts
)
(
T
:
set
(
token
sts
))
:
RA
:=
Definition
auth
(
s
:
state
sts
)
(
T
:
set
(
token
sts
))
:
RA
:=
...
@@ -299,7 +299,7 @@ Qed.
...
@@ -299,7 +299,7 @@ Qed.
Lemma
frag_included'
S1
S2
T
:
Lemma
frag_included'
S1
S2
T
:
closed
sts
S2
T
→
closed
sts
S1
T
→
closed
sts
S2
T
→
closed
sts
S1
T
→
S2
≡
(
S1
∩
sts
.
up_set
sts
S2
∅
)
→
S2
≡
S1
∩
sts
.
up_set
sts
S2
∅
→
frag
S1
T
≼
frag
S2
T
.
frag
S1
T
≼
frag
S2
T
.
Proof
.
Proof
.
intros
.
apply
frag_included
;
first
done
.
intros
.
apply
frag_included
;
first
done
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/sts.v
+
3
−
3
View file @
edfd4f51
...
@@ -12,13 +12,13 @@ Module sts.
...
@@ -12,13 +12,13 @@ Module sts.
like you would use "auth_ctx" etc. *)
like you would use "auth_ctx" etc. *)
Export
algebra
.
sts
.
sts
.
Export
algebra
.
sts
.
sts
.
Class
InG
Λ
Σ
(
i
:
gid
)
(
sts
:
S
ts
)
:=
{
Class
InG
Λ
Σ
(
i
:
gid
)
(
sts
:
s
ts
T
)
:=
{
inG
:>
ghost_ownership
.
InG
Λ
Σ
i
(
sts
.
RA
sts
);
inG
:>
ghost_ownership
.
InG
Λ
Σ
i
(
sts
.
RA
sts
);
inh
:>
Inhabited
(
state
sts
);
inh
:>
Inhabited
(
state
sts
);
}
.
}
.
Section
definitions
.
Section
definitions
.
Context
{
Λ
Σ
}
(
i
:
gid
)
(
sts
:
S
ts
)
`{
!
InG
Λ
Σ
i
sts
}
(
γ
:
gname
)
.
Context
{
Λ
Σ
}
(
i
:
gid
)
(
sts
:
s
ts
T
)
`{
!
InG
Λ
Σ
i
sts
}
(
γ
:
gname
)
.
Definition
inv
(
φ
:
state
sts
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
Definition
inv
(
φ
:
state
sts
→
iPropG
Λ
Σ
)
:
iPropG
Λ
Σ
:=
(
∃
s
,
own
i
γ
(
auth
sts
s
∅
)
★
φ
s
)
%
I
.
(
∃
s
,
own
i
γ
(
auth
sts
s
∅
)
★
φ
s
)
%
I
.
Definition
in_states
(
S
:
set
(
state
sts
))
(
T
:
set
(
token
sts
))
:
iPropG
Λ
Σ
:=
Definition
in_states
(
S
:
set
(
state
sts
))
(
T
:
set
(
token
sts
))
:
iPropG
Λ
Σ
:=
...
@@ -34,7 +34,7 @@ Instance: Params (@in_state) 6.
...
@@ -34,7 +34,7 @@ Instance: Params (@in_state) 6.
Instance
:
Params
(
@
ctx
)
7
.
Instance
:
Params
(
@
ctx
)
7
.
Section
sts
.
Section
sts
.
Context
{
Λ
Σ
}
(
i
:
gid
)
(
sts
:
S
ts
)
`{
!
InG
Λ
Σ
StsI
sts
}
.
Context
{
Λ
Σ
}
(
i
:
gid
)
(
sts
:
s
ts
T
)
`{
!
InG
Λ
Σ
StsI
sts
}
.
Context
(
φ
:
state
sts
→
iPropG
Λ
Σ
)
.
Context
(
φ
:
state
sts
→
iPropG
Λ
Σ
)
.
Implicit
Types
N
:
namespace
.
Implicit
Types
N
:
namespace
.
Implicit
Types
P
Q
R
:
iPropG
Λ
Σ
.
Implicit
Types
P
Q
R
:
iPropG
Λ
Σ
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment