Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yixuan Chen
Iris
Commits
d90c495b
Commit
d90c495b
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Plain Diff
Merge branch 'master' of gitlab.mpi-sws.org:FP/iris-coq
parents
07d525a0
10ccbc24
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
algebra/upred.v
+4
-4
4 additions, 4 deletions
algebra/upred.v
program_logic/auth.v
+10
-1
10 additions, 1 deletion
program_logic/auth.v
with
14 additions
and
5 deletions
algebra/upred.v
+
4
−
4
View file @
d90c495b
...
@@ -376,8 +376,8 @@ Lemma exist_elim {A} (P : A → uPred M) Q : (∀ a, P a ⊑ Q) → (∃ a, P a)
...
@@ -376,8 +376,8 @@ Lemma exist_elim {A} (P : A → uPred M) Q : (∀ a, P a ⊑ Q) → (∃ a, P a)
Proof
.
by
intros
HPQ
x
n
?
[
a
?];
apply
HPQ
with
a
.
Qed
.
Proof
.
by
intros
HPQ
x
n
?
[
a
?];
apply
HPQ
with
a
.
Qed
.
Lemma
eq_refl
{
A
:
cofeT
}
(
a
:
A
)
P
:
P
⊑
(
a
≡
a
)
.
Lemma
eq_refl
{
A
:
cofeT
}
(
a
:
A
)
P
:
P
⊑
(
a
≡
a
)
.
Proof
.
by
intros
x
n
??;
simpl
.
Qed
.
Proof
.
by
intros
x
n
??;
simpl
.
Qed
.
Lemma
eq_rewrite
{
A
:
cofeT
}
P
(
Q
:
A
→
uPred
M
)
Lemma
eq_rewrite
{
A
:
cofeT
}
a
b
(
Q
:
A
→
uPred
M
)
P
`{
HQ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Q
}
a
b
:
P
⊑
(
a
≡
b
)
→
P
⊑
Q
a
→
P
⊑
Q
b
.
`{
HQ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
Q
}
:
P
⊑
(
a
≡
b
)
→
P
⊑
Q
a
→
P
⊑
Q
b
.
Proof
.
Proof
.
intros
Hab
Ha
x
n
??;
apply
HQ
with
n
a
;
auto
.
by
symmetry
;
apply
Hab
with
x
.
intros
Hab
Ha
x
n
??;
apply
HQ
with
n
a
;
auto
.
by
symmetry
;
apply
Hab
with
x
.
Qed
.
Qed
.
...
@@ -435,7 +435,7 @@ Lemma equiv_eq {A : cofeT} P (a b : A) : a ≡ b → P ⊑ (a ≡ b).
...
@@ -435,7 +435,7 @@ Lemma equiv_eq {A : cofeT} P (a b : A) : a ≡ b → P ⊑ (a ≡ b).
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Proof
.
intros
->
;
apply
eq_refl
.
Qed
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
)
.
Lemma
eq_sym
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
a
≡
b
)
⊑
(
b
≡
a
)
.
Proof
.
Proof
.
refine
(
eq_rewrite
_
(
λ
b
,
b
≡
a
)
%
I
a
b
_
_
);
auto
using
eq_refl
.
apply
(
eq_rewrite
a
b
(
λ
b
,
b
≡
a
)
%
I
);
auto
using
eq_refl
.
intros
n
;
solve_proper
.
intros
n
;
solve_proper
.
Qed
.
Qed
.
...
@@ -752,7 +752,7 @@ Qed.
...
@@ -752,7 +752,7 @@ Qed.
Lemma
always_eq
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
□
(
a
≡
b
))
%
I
≡
(
a
≡
b
:
uPred
M
)
%
I
.
Lemma
always_eq
{
A
:
cofeT
}
(
a
b
:
A
)
:
(
□
(
a
≡
b
))
%
I
≡
(
a
≡
b
:
uPred
M
)
%
I
.
Proof
.
Proof
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_elim
.
apply
(
anti_symmetric
(
⊑
));
auto
using
always_elim
.
refine
(
eq_rewrite
_
(
λ
b
,
□
(
a
≡
b
))
%
I
a
b
_
_
);
auto
.
apply
(
eq_rewrite
a
b
(
λ
b
,
□
(
a
≡
b
))
%
I
);
auto
.
{
intros
n
;
solve_proper
.
}
{
intros
n
;
solve_proper
.
}
rewrite
-
(
eq_refl
_
True
)
always_const
;
auto
.
rewrite
-
(
eq_refl
_
True
)
always_const
;
auto
.
Qed
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/auth.v
+
10
−
1
View file @
d90c495b
...
@@ -40,6 +40,8 @@ Section auth.
...
@@ -40,6 +40,8 @@ Section auth.
by
rewrite
always_and_sep_l'
.
by
rewrite
always_and_sep_l'
.
Qed
.
Qed
.
Context
{
Hφ
:
∀
n
,
Proper
(
dist
n
==>
dist
n
)
φ
}
.
Lemma
auth_opened
a
γ
:
Lemma
auth_opened
a
γ
:
(
▷
auth_inv
γ
★
auth_own
γ
a
)
⊑
(
▷∃
a'
,
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
(
▷
auth_inv
γ
★
auth_own
γ
a
)
⊑
(
▷∃
a'
,
φ
(
a
⋅
a'
)
★
own
AuthI
γ
(
●
(
a
⋅
a'
)
⋅
◯
a
))
.
Proof
.
Proof
.
...
@@ -48,6 +50,13 @@ Section auth.
...
@@ -48,6 +50,13 @@ Section auth.
rewrite
/
auth_own
[(_
★
φ
_)
%
I
]
commutative
-
associative
-
own_op
.
rewrite
/
auth_own
[(_
★
φ
_)
%
I
]
commutative
-
associative
-
own_op
.
rewrite
own_valid_r
auth_valid
!
sep_exist_l
/=.
apply
exist_elim
=>
a'
.
rewrite
own_valid_r
auth_valid
!
sep_exist_l
/=.
apply
exist_elim
=>
a'
.
rewrite
[
∅
⋅
_]
left_id
-
(
exist_intro
a'
)
.
rewrite
[
∅
⋅
_]
left_id
-
(
exist_intro
a'
)
.
Abort
.
apply
(
eq_rewrite
b
(
a
⋅
a'
)
(
λ
x
,
φ
x
★
own
AuthI
γ
(
●
x
⋅
◯
a
))
%
I
)
.
{
(* TODO this asks for automation. *)
move
=>
n
a1
a2
Ha
.
by
rewrite
!
Ha
.
}
{
by
rewrite
!
sep_elim_r
.
}
apply
sep_mono
;
first
done
.
by
rewrite
sep_elim_l
.
Qed
.
End
auth
.
End
auth
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment