Skip to content
Snippets Groups Projects
Commit b6bc287b authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Merge branch 'later_stripping' into 'master'

Added capability for stripping multiple laters per step in HeapLang

See merge request iris/iris!783
parents 316257fb dd53c9a9
No related branches found
No related tags found
No related merge requests found
......@@ -27,6 +27,14 @@ lemma.
* Make the `inG` instances for `libG` fields local, so they are only used inside
the library that defines the `libG`.
**Changes in `iris_heap_lang`:**
* Changed the `num_laters_per_step` of `heap_lang` to `λ n, n`, signifying that
each step of the weakest precondition strips `n` laters, where `n` is the
number of steps taken so far. This number is tied to ghost state in the state
interpretation, which is exposed, updated, and used with new lemmas
`wp_lb_init`, `wp_lb_update`, and `wp_step_fupdN_lb`. (by Jonas Kastberg Hinrichsen)
## Iris 3.6.0 (2022-01-22)
The highlights and most notable changes of this release are:
......
......@@ -116,22 +116,27 @@ Proof.
Qed.
End adequacy.
Theorem twp_total Σ Λ `{!invGpreS Σ} s e σ Φ :
Theorem twp_total Σ Λ `{!invGpreS Σ} s e σ Φ n :
( `{Hinv : !invGS Σ},
|={}=>
(stateI : state Λ list (observation Λ) nat iProp Σ)
(fork_post : val Λ iProp Σ),
(stateI : state Λ nat list (observation Λ) nat iProp Σ)
(** We abstract over any instance of [irisG], and thus any value of
the field [num_laters_per_step]. This is needed because instances
of [irisG] (e.g., the one of HeapLang) are shared between WP and
TWP, where TWP simply ignores [num_laters_per_step]. *)
(num_laters_per_step : nat nat)
(fork_post : val Λ iProp Σ)
state_interp_mono,
let _ : irisGS Λ Σ :=
IrisG _ _ Hinv (λ σ _, stateI σ) fork_post (λ _, 0)
(λ _ _ _ _, fupd_intro _ _)
IrisG _ _ Hinv stateI fork_post num_laters_per_step state_interp_mono
in
stateI σ [] 0 WP e @ s; [{ Φ }])
stateI σ n [] 0 WP e @ s; [{ Φ }])
sn erased_step ([e], σ). (* i.e. ([e], σ) is strongly normalizing *)
Proof.
intros Hwp. apply (soundness (M:=iResUR Σ) _ 1); simpl.
apply (fupd_plain_soundness _)=> Hinv.
iMod (Hwp) as (stateI fork_post) "[Hσ H]".
iApply (@twptp_total _ _ (IrisG _ _ Hinv (λ σ _, stateI σ) fork_post _ _)
_ 0 with "Hσ").
iMod (Hwp) as (stateI num_laters_per_step fork_post stateI_mono) "[Hσ H]".
set (iG := IrisG _ _ Hinv stateI fork_post num_laters_per_step stateI_mono).
iApply (@twptp_total _ _ iG _ n with "Hσ").
by iApply (@twp_twptp _ _ (IrisG _ _ Hinv _ fork_post _ _)).
Qed.
From iris.algebra Require Import auth.
From iris.base_logic.lib Require Import mono_nat.
From iris.proofmode Require Import proofmode.
From iris.program_logic Require Export weakestpre adequacy.
From iris.heap_lang Require Import proofmode notation.
......@@ -9,23 +10,42 @@ Class heapGpreS Σ := HeapGpreS {
heapGpreS_heap :> gen_heapGpreS loc (option val) Σ;
heapGpreS_inv_heap :> inv_heapGpreS loc (option val) Σ;
heapGpreS_proph :> proph_mapGpreS proph_id (val * val) Σ;
heapGS_step_cnt :> mono_natG Σ;
}.
Definition heapΣ : gFunctors :=
#[invΣ; gen_heapΣ loc (option val); inv_heapΣ loc (option val); proph_mapΣ proph_id (val * val)].
#[invΣ; gen_heapΣ loc (option val); inv_heapΣ loc (option val);
proph_mapΣ proph_id (val * val); mono_natΣ].
Global Instance subG_heapGpreS {Σ} : subG heapΣ Σ heapGpreS Σ.
Proof. solve_inG. Qed.
(* TODO: The [wp_adequacy] lemma is insufficient for a state interpretation
with a non-constant step index function. We thus use the more general
[wp_strong_adequacy] lemma. The proof below replicates part of the proof of
[wp_adequacy], and it hence would make sense to see if we can prove a version
of [wp_adequacy] for a non-constant step version. *)
Definition heap_adequacy Σ `{!heapGpreS Σ} s e σ φ :
( `{!heapGS Σ}, inv_heap_inv -∗ WP e @ s; {{ v, φ v }})
adequate s e σ (λ v _, φ v).
Proof.
intros Hwp; eapply (wp_adequacy _ _); iIntros (? κs) "".
intros Hwp.
apply adequate_alt; intros t2 σ2 [n [κs ?]]%erased_steps_nsteps.
eapply (wp_strong_adequacy Σ _); [|done].
iIntros (Hinv).
iMod (gen_heap_init σ.(heap)) as (?) "[Hh _]".
iMod (inv_heap_init loc (option val)) as (?) ">Hi".
iMod (proph_map_init κs σ.(used_proph_id)) as (?) "Hp".
iModIntro. iExists
(λ σ κs, (gen_heap_interp σ.(heap) proph_map_interp κs σ.(used_proph_id))%I),
(λ _, True%I).
iFrame. iApply (Hwp (HeapGS _ _ _ _ _)). done.
iMod (mono_nat_own_alloc) as (γ) "[Hsteps _]".
iDestruct (Hwp (HeapGS _ _ _ _ _ _ _) with "Hi") as "Hwp".
iModIntro. iExists s.
iExists (λ σ ns κs nt, (gen_heap_interp σ.(heap)
proph_map_interp κs σ.(used_proph_id)
mono_nat_auth_own γ 1 ns))%I.
iExists [(λ v, φ v⌝%I)], (λ _, True)%I, _ => /=.
iFrame.
iIntros (es' t2' -> ? ?) " _ H _".
iApply fupd_mask_intro_discard; [done|]. iSplit; [|done].
iDestruct (big_sepL2_cons_inv_r with "H") as (e' ? ->) "[Hwp H]".
iDestruct (big_sepL2_nil_inv_r with "H") as %->.
iIntros (v2 t2'' [= -> <-]). by rewrite to_of_val.
Qed.
......@@ -3,6 +3,7 @@ the Iris lifting lemmas. *)
From iris.proofmode Require Import proofmode.
From iris.bi.lib Require Import fractional.
From iris.base_logic.lib Require Import mono_nat.
From iris.base_logic.lib Require Export gen_heap proph_map gen_inv_heap.
From iris.program_logic Require Export weakestpre total_weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
......@@ -15,16 +16,60 @@ Class heapGS Σ := HeapGS {
heapGS_gen_heapGS :> gen_heapGS loc (option val) Σ;
heapGS_inv_heapGS :> inv_heapGS loc (option val) Σ;
heapGS_proph_mapGS :> proph_mapGS proph_id (val * val) Σ;
heapGS_step_name : gname;
heapGS_step_cnt : mono_natG Σ;
}.
Local Existing Instance heapGS_step_cnt.
Global Instance heapGS_irisGS `{!heapGS Σ} : irisGS heap_lang Σ := {
Section steps.
Context `{!heapGS Σ}.
Local Definition steps_auth (n : nat) : iProp Σ :=
mono_nat_auth_own heapGS_step_name 1 n.
Definition steps_lb (n : nat) : iProp Σ :=
mono_nat_lb_own heapGS_step_name n.
Local Lemma steps_lb_valid n m :
steps_auth n -∗ steps_lb m -∗ m n⌝.
Proof.
iIntros "Hauth Hlb".
by iDestruct (mono_nat_lb_own_valid with "Hauth Hlb") as %[_ Hle].
Qed.
Local Lemma steps_lb_get n :
steps_auth n -∗ steps_lb n.
Proof. apply mono_nat_lb_own_get. Qed.
Local Lemma steps_auth_update n n' :
n n' steps_auth n ==∗ steps_auth n' steps_lb n'.
Proof. intros Hle. by apply mono_nat_own_update. Qed.
Local Lemma steps_auth_update_S n :
steps_auth n ==∗ steps_auth (S n).
Proof.
iIntros "Hauth".
iMod (mono_nat_own_update with "Hauth") as "[$ _]"; [lia|done].
Qed.
Lemma steps_lb_le n n' :
n' n steps_lb n -∗ steps_lb n'.
Proof. intros Hle. by apply mono_nat_lb_own_le. Qed.
End steps.
Global Program Instance heapGS_irisGS `{heapGS Σ} : irisGS heap_lang Σ := {
iris_invGS := heapGS_invGS;
state_interp σ _ κs _ :=
(gen_heap_interp σ.(heap) proph_map_interp κs σ.(used_proph_id))%I;
state_interp σ step_cnt κs _ :=
(gen_heap_interp σ.(heap) proph_map_interp κs σ.(used_proph_id)
steps_auth step_cnt)%I;
fork_post _ := True%I;
num_laters_per_step _ := 0;
state_interp_mono _ _ _ _ := fupd_intro _ _
num_laters_per_step n := n;
}.
Next Obligation.
iIntros (?? σ ns κs nt) "/= ($ & $ & H)".
by iMod (steps_auth_update_S with "H") as "$".
Qed.
(** Since we use an [option val] instance of [gen_heap], we need to overwrite
the notations. That also helps for scopes and coercions. *)
......@@ -68,6 +113,61 @@ Implicit Types σ : state.
Implicit Types v : val.
Implicit Types l : loc.
Lemma wp_lb_init s E e Φ :
TCEq (to_val e) None
(steps_lb 0 -∗ WP e @ s; E {{ v, Φ v }}) -∗
WP e @ s; E {{ Φ }}.
Proof.
(** TODO: We should try to use a generic lifting lemma (and avoid [wp_unfold])
here, since this breaks the WP abstraction. *)
rewrite !wp_unfold /wp_pre /=. iIntros (->) "Hwp".
iIntros (σ1 ns κ κs m) "(Hσ & Hκ & Hsteps)".
iDestruct (steps_lb_get with "Hsteps") as "#Hlb".
iDestruct (steps_lb_le _ 0 with "Hlb") as "Hlb0"; [lia|].
iSpecialize ("Hwp" with "Hlb0"). iApply ("Hwp" $! σ1 ns κ κs m). iFrame.
Qed.
Lemma wp_lb_update s n E e Φ :
TCEq (to_val e) None
steps_lb n -∗
WP e @ s; E {{ v, steps_lb (S n) -∗ Φ v }} -∗
WP e @ s; E {{ Φ }}.
Proof.
(** TODO: We should try to use a generic lifting lemma (and avoid [wp_unfold])
here, since this breaks the WP abstraction. *)
rewrite !wp_unfold /wp_pre /=. iIntros (->) "Hlb Hwp".
iIntros (σ1 ns κ κs m) "(Hσ & Hκ & Hsteps)".
iDestruct (steps_lb_valid with "Hsteps Hlb") as %?.
iMod ("Hwp" $! σ1 ns κ κs m with "[$Hσ $Hκ $Hsteps]") as "[%Hs Hwp]".
iModIntro. iSplit; [done|].
iIntros (e2 σ2 efs Hstep).
iMod ("Hwp" with "[//]") as "Hwp".
iIntros "!> !>". iMod "Hwp" as "Hwp". iIntros "!>".
iApply (step_fupdN_wand with "Hwp").
iIntros "Hwp". iMod "Hwp" as "(($ & $ & Hsteps)& Hwp & $)".
iDestruct (steps_lb_get with "Hsteps") as "#HlbS".
iDestruct (steps_lb_le _ (S n) with "HlbS") as "#HlbS'"; [lia|].
iModIntro. iFrame "Hsteps".
iApply (wp_wand with "Hwp"). iIntros (v) "HΦ". by iApply "HΦ".
Qed.
Lemma wp_step_fupdN_lb s n E1 E2 e P Φ :
TCEq (to_val e) None
E2 E1
steps_lb n -∗
(|={E1E2,}=> |={}▷=>^(S n) |={,E1E2}=> P) -∗
WP e @ s; E2 {{ v, P ={E1}=∗ Φ v }} -∗
WP e @ s; E1 {{ Φ }}.
Proof.
iIntros (He HE) "Hlb HP Hwp".
iApply wp_step_fupdN; [done|].
iSplit; [|by iFrame].
iIntros (σ ns κs nt) "(? & ? & Hsteps)".
iDestruct (steps_lb_valid with "Hsteps Hlb") as %Hle.
iApply fupd_mask_intro; [set_solver|].
iIntros "_". iPureIntro. rewrite /num_laters_per_step /=. lia.
Qed.
(** Recursive functions: we do not use this lemmas as it is easier to use Löb
induction directly, but this demonstrates that we can state the expected
reasoning principle for recursive functions, without any visible ▷. *)
......@@ -87,16 +187,20 @@ Lemma wp_fork s E e Φ :
WP e @ s; {{ _, True }} -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E {{ Φ }}.
Proof.
iIntros "He HΦ". iApply wp_lift_atomic_head_step; [done|].
iIntros (σ1 ns κ κs nt) "Hσ !>"; iSplit; first by eauto with head_step.
iIntros "!>" (v2 σ2 efs Hstep); inv_head_step. by iFrame.
iIntros (σ1 ns κ κs nt) "(?&?&Hsteps) !>"; iSplit; first by eauto with head_step.
iIntros "!>" (v2 σ2 efs Hstep); inv_head_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
by iFrame.
Qed.
Lemma twp_fork s E e Φ :
WP e @ s; [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }].
Proof.
iIntros "He HΦ". iApply twp_lift_atomic_head_step; [done|].
iIntros (σ1 ns κs nt) "Hσ !>"; iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step. by iFrame.
iIntros (σ1 ns κs nt) "(?&?&Hsteps) !>"; iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
by iFrame.
Qed.
(** Heap *)
......@@ -224,13 +328,14 @@ Lemma twp_allocN_seq s E v n :
(l + (i : nat)) v meta_token (l + (i : nat)) }]].
Proof.
iIntros (Hn Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>"; iSplit; first by destruct n; auto with lia head_step.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>"; iSplit; first by destruct n; auto with lia head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_alloc_big _ (heap_array _ (replicate (Z.to_nat n) v)) with "Hσ")
as "(Hσ & Hl & Hm)".
{ apply heap_array_map_disjoint.
rewrite replicate_length Z2Nat.id; auto with lia. }
iModIntro; do 2 (iSplit; first done). iFrame "Hσ Hκs". iApply "HΦ".
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro; do 2 (iSplit; first done). iFrame "Hσ Hκs Hsteps". iApply "HΦ".
iApply big_sepL_sep. iSplitL "Hl".
- by iApply heap_array_to_seq_mapsto.
- iApply (heap_array_to_seq_meta with "Hm"). by rewrite replicate_length.
......@@ -263,10 +368,11 @@ Lemma twp_free s E l v :
[[{ RET LitV LitUnit; True }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_free s E l v :
......@@ -281,10 +387,12 @@ Lemma twp_load s E l dq v :
[[{ l {dq} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l {dq} v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro. iSplit; [done|]. iSplit; [done|]. iFrame.
by iApply "HΦ".
Qed.
Lemma wp_load s E l dq v :
{{{ l {dq} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l {dq} v }}}.
......@@ -298,9 +406,10 @@ Lemma twp_store s E l v' v :
[[{ RET LitV LitUnit; l v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
......@@ -317,9 +426,10 @@ Lemma twp_xchg s E l v' v :
[[{ RET v'; l v }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2 σ2 efs Hstep); inv_head_step.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
......@@ -337,10 +447,11 @@ Lemma twp_cmpxchg_fail s E l dq v' v1 v2 :
[[{ RET PairV v' (LitV $ LitBool false); l {dq} v' }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2' σ2 efs Hstep); inv_head_step.
rewrite bool_decide_false //.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro; iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_fail s E l dq v' v1 v2 :
......@@ -358,11 +469,12 @@ Lemma twp_cmpxchg_suc s E l v1 v2 v' :
[[{ RET PairV v' (LitV $ LitBool true); l v2 }]].
Proof.
iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ v2' σ2 efs Hstep); inv_head_step.
rewrite bool_decide_true //.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro. iSplit; first done. iSplit; first done. iFrame. by iApply "HΦ".
Qed.
Lemma wp_cmpxchg_suc s E l v1 v2 v' :
......@@ -379,10 +491,11 @@ Lemma twp_faa s E l i1 i2 :
[[{ RET LitV (LitInt i1); l LitV (LitInt (i1 + i2)) }]].
Proof.
iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κs nt) "[Hσ Hκs] !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iIntros (σ1 ns κs nt) "(& Hκs & Hsteps) !>". iDestruct (gen_heap_valid with "Hσ Hl") as %?.
iSplit; first by eauto with head_step.
iIntros (κ e2 σ2 efs Hstep); inv_head_step.
iMod (gen_heap_update with "Hσ Hl") as "[$ Hl]".
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iModIntro. do 2 (iSplit; first done). iFrame. by iApply "HΦ".
Qed.
Lemma wp_faa s E l i1 i2 :
......@@ -399,9 +512,10 @@ Lemma wp_new_proph s E :
{{{ pvs p, RET (LitV (LitProphecy p)); proph p pvs }}}.
Proof.
iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; first done.
iIntros (σ1 ns κ κs nt) "[Hσ HR] !>". iSplit; first by eauto with head_step.
iIntros (σ1 ns κ κs nt) "(& HR & Hsteps) !>". iSplit; first by eauto with head_step.
iIntros "!>" (v2 σ2 efs Hstep). inv_head_step.
rename select proph_id into p.
iMod (steps_auth_update_S with "Hsteps") as "Hsteps".
iMod (proph_map_new_proph p with "HR") as "[HR Hp]"; first done.
iModIntro; iSplit; first done. iFrame. by iApply "HΦ".
Qed.
......@@ -458,20 +572,22 @@ Proof.
(* TODO we should try to use a generic lifting lemma (and avoid [wp_unfold])
here, since this breaks the WP abstraction. *)
iIntros (A He) "Hp WPe". rewrite !wp_unfold /wp_pre /= He. simpl in *.
iIntros (σ1 ns κ κs nt) "[Hσ Hκ]".
iIntros (σ1 ns κ κs nt) "(& & Hsteps)".
destruct κ as [|[p' [w' v']] κ' _] using rev_ind.
- iMod ("WPe" $! σ1 ns [] κs nt with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
- iMod ("WPe" $! σ1 ns [] κs nt with "[$Hσ $Hκ $Hsteps]") as "[Hs WPe]".
iModIntro. iSplit.
{ iDestruct "Hs" as "%". iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
iIntros (e2 σ2 efs step). exfalso. apply step_resolve in step; last done.
inv_head_step. match goal with H: ?κs ++ [_] = [] |- _ => by destruct κs end.
- rewrite -assoc.
iMod ("WPe" $! σ1 0 _ _ nt with "[$Hσ $Hκ]") as "[Hs WPe]". iModIntro. iSplit.
iMod ("WPe" $! σ1 ns _ _ nt with "[$Hσ $Hκ $Hsteps]") as "[Hs WPe]". iModIntro. iSplit.
{ iDestruct "Hs" as %?. iPureIntro. destruct s; [ by apply resolve_reducible | done]. }
iIntros (e2 σ2 efs step). apply step_resolve in step; last done.
inv_head_step; simplify_list_eq.
iMod ("WPe" $! (Val w') σ2 efs with "[%]") as "WPe".
{ by eexists [] _ _. }
iModIntro. iNext. iModIntro. iMod "WPe" as ">[[$ Hκ] WPe]".
iModIntro. iNext. iMod "WPe" as "WPe". iModIntro.
iApply (step_fupdN_wand with "WPe"); iIntros "> [($ & Hκ & $) WPe]".
iMod (proph_map_resolve_proph p' (w',v') κs with "[$Hκ $Hp]") as (vs' ->) "[$ HPost]".
iModIntro. rewrite !wp_unfold /wp_pre /=. iDestruct "WPe" as "[HΦ $]".
iMod "HΦ". iModIntro. by iApply "HΦ".
......
From iris.proofmode Require Import proofmode.
From iris.base_logic.lib Require Import mono_nat.
From iris.program_logic Require Export total_adequacy.
From iris.heap_lang Require Export adequacy.
From iris.heap_lang Require Import proofmode notation.
......@@ -12,9 +13,12 @@ Proof.
iMod (gen_heap_init σ.(heap)) as (?) "[Hh _]".
iMod (inv_heap_init loc (option val)) as (?) ">Hi".
iMod (proph_map_init [] σ.(used_proph_id)) as (?) "Hp".
iMod (mono_nat_own_alloc 0) as (γ) "[Hsteps _]".
iModIntro.
iExists
(λ σ κs _, (gen_heap_interp σ.(heap) proph_map_interp κs σ.(used_proph_id))%I),
(λ _, True%I); iFrame.
iApply (Hwp (HeapGS _ _ _ _ _)). done.
(λ σ ns κs _, (gen_heap_interp σ.(heap)
proph_map_interp κs σ.(used_proph_id)
mono_nat_auth_own γ 1 ns)%I),
id, (λ _, True%I), _; iFrame.
by iApply (Hwp (HeapGS _ _ _ _ _ _ _)).
Qed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment