Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yixuan Chen
Iris
Commits
ae64fb70
Commit
ae64fb70
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Put discrete_validI together with the other validIs and shorten its proof.
parent
9bf9afb4
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/upred.v
+16
-20
16 additions, 20 deletions
algebra/upred.v
with
16 additions
and
20 deletions
algebra/upred.v
+
16
−
20
View file @
ae64fb70
...
@@ -833,21 +833,31 @@ Proof. done. Qed.
...
@@ -833,21 +833,31 @@ Proof. done. Qed.
Lemma
valid_weaken
{
A
:
cmraT
}
(
a
b
:
A
)
:
✓
(
a
⋅
b
)
⊑
✓
a
.
Lemma
valid_weaken
{
A
:
cmraT
}
(
a
b
:
A
)
:
✓
(
a
⋅
b
)
⊑
✓
a
.
Proof
.
intros
r
n
_;
apply
cmra_validN_op_l
.
Qed
.
Proof
.
intros
r
n
_;
apply
cmra_validN_op_l
.
Qed
.
(* Own and valid derived *)
Lemma
ownM_invalid
(
a
:
M
)
:
¬
✓
{
0
}
a
→
uPred_ownM
a
⊑
False
.
Proof
.
by
intros
;
rewrite
ownM_valid
valid_elim
.
Qed
.
Global
Instance
ownM_mono
:
Proper
(
flip
(
≼
)
==>
(
⊑
))
(
@
uPred_ownM
M
)
.
Proof
.
move
=>
a
b
[
c
H
]
.
rewrite
H
ownM_op
.
eauto
.
Qed
.
(* Products *)
Lemma
prod_equivI
{
A
B
:
cofeT
}
(
x
y
:
A
*
B
)
:
Lemma
prod_equivI
{
A
B
:
cofeT
}
(
x
y
:
A
*
B
)
:
(
x
≡
y
)
%
I
≡
(
x
.
1
≡
y
.
1
∧
x
.
2
≡
y
.
2
:
uPred
M
)
%
I
.
(
x
≡
y
)
%
I
≡
(
x
.
1
≡
y
.
1
∧
x
.
2
≡
y
.
2
:
uPred
M
)
%
I
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
prod_validI
{
A
B
:
cmraT
}
(
x
:
A
*
B
)
:
Lemma
prod_validI
{
A
B
:
cmraT
}
(
x
:
A
*
B
)
:
(
✓
x
)
%
I
≡
(
✓
x
.
1
∧
✓
x
.
2
:
uPred
M
)
%
I
.
(
✓
x
)
%
I
≡
(
✓
x
.
1
∧
✓
x
.
2
:
uPred
M
)
%
I
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
(* Later *)
Lemma
later_equivI
{
A
:
cofeT
}
(
x
y
:
later
A
)
:
Lemma
later_equivI
{
A
:
cofeT
}
(
x
y
:
later
A
)
:
(
x
≡
y
)
%
I
≡
(
▷
(
later_car
x
≡
later_car
y
)
:
uPred
M
)
%
I
.
(
x
≡
y
)
%
I
≡
(
▷
(
later_car
x
≡
later_car
y
)
:
uPred
M
)
%
I
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
(* Own and valid derived *)
(* Discrete *)
Lemma
ownM_invalid
(
a
:
M
)
:
¬
✓
{
0
}
a
→
uPred_ownM
a
⊑
False
.
(* For equality, there already is timeless_eq *)
Proof
.
by
intros
;
rewrite
ownM_valid
valid_elim
.
Qed
.
Lemma
discrete_validI
{
A
:
cofeT
}
`{
∀
x
:
A
,
Timeless
x
}
Global
Instance
ownM_mono
:
Proper
(
flip
(
≼
)
==>
(
⊑
))
(
@
uPred_ownM
M
)
.
`{
Op
A
,
Valid
A
,
Unit
A
,
Minus
A
}
(
ra
:
RA
A
)
(
x
:
discreteRA
ra
)
:
Proof
.
move
=>
a
b
[
c
H
]
.
rewrite
H
ownM_op
.
eauto
.
Qed
.
(
✓
x
)
%
I
≡
(
■
✓
x
:
uPred
M
)
%
I
.
Proof
.
done
.
Qed
.
(* Timeless *)
(* Timeless *)
Lemma
timelessP_spec
P
:
TimelessP
P
↔
∀
x
n
,
✓
{
n
}
x
→
P
0
x
→
P
n
x
.
Lemma
timelessP_spec
P
:
TimelessP
P
↔
∀
x
n
,
✓
{
n
}
x
→
P
0
x
→
P
n
x
.
...
@@ -962,23 +972,9 @@ Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed.
...
@@ -962,23 +972,9 @@ Proof. by rewrite -(always_always Q); apply always_entails_r'. Qed.
End
uPred_logic
.
End
uPred_logic
.
Section
discrete
.
Context
{
A
:
cofeT
}
`{
∀
x
:
A
,
Timeless
x
}
.
Context
{
op
:
Op
A
}
{
v
:
Valid
A
}
`{
Unit
A
,
Minus
A
}
(
ra
:
RA
A
)
.
(** Internalized properties of discrete RAs *)
(* For equality, there already is timeless_eq *)
Lemma
discrete_validI
{
M
}
(
x
:
discreteRA
ra
)
:
(
✓
x
)
%
I
≡
(
■
✓
x
:
uPred
M
)
%
I
.
Proof
.
apply
(
anti_symm
(
⊑
))
.
-
move
=>?
n
?
.
done
.
-
move
=>?
n
?
?
.
by
apply
:
discrete_valid
.
Qed
.
End
discrete
.
(* Hint DB for the logic *)
(* Hint DB for the logic *)
Create
HintDb
I
.
Create
HintDb
I
.
Hint
Resolve
const_intro
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
:
I
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
:
I
.
Hint
Resolve
and_intro
and_elim_l'
and_elim_r'
:
I
.
Hint
Resolve
and_intro
and_elim_l'
and_elim_r'
:
I
.
Hint
Resolve
always_mono
:
I
.
Hint
Resolve
always_mono
:
I
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment