Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yixuan Chen
Iris
Commits
5b3865a0
Commit
5b3865a0
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
prove the remaining lemmas in global_cmra.v
parent
7ca7ad53
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
algebra/fin_maps.v
+2
-2
2 additions, 2 deletions
algebra/fin_maps.v
algebra/iprod.v
+49
-2
49 additions, 2 deletions
algebra/iprod.v
program_logic/global_cmra.v
+19
-5
19 additions, 5 deletions
program_logic/global_cmra.v
with
70 additions
and
9 deletions
algebra/fin_maps.v
+
2
−
2
View file @
5b3865a0
...
...
@@ -64,14 +64,14 @@ Proof.
by
(
by
symmetry
in
Hx
;
inversion
Hx
;
cofe_subst
;
rewrite
insert_id
)
.
by
rewrite
(
timeless
m
(
<
[
i
:=
x
]
>
m
))
//
lookup_insert
.
Qed
.
Global
Instance
map_
ra_
insert_timeless
(
m
:
gmap
K
A
)
i
x
:
Global
Instance
map_insert_timeless
(
m
:
gmap
K
A
)
i
x
:
Timeless
x
→
Timeless
m
→
Timeless
(
<
[
i
:=
x
]
>
m
)
.
Proof
.
intros
??
m'
Hm
j
;
destruct
(
decide
(
i
=
j
));
simplify_map_equality
.
{
by
apply
(
timeless
_);
rewrite
-
Hm
lookup_insert
.
}
by
apply
(
timeless
_);
rewrite
-
Hm
lookup_insert_ne
.
Qed
.
Global
Instance
map_
ra_
singleton_timeless
(
i
:
K
)
(
x
:
A
)
:
Global
Instance
map_singleton_timeless
(
i
:
K
)
(
x
:
A
)
:
Timeless
x
→
Timeless
({[
i
↦
x
]}
:
gmap
K
A
)
:=
_
.
End
cofe
.
Arguments
mapC
_
{_
_}
_
.
...
...
This diff is collapsed.
Click to expand it.
algebra/iprod.v
+
49
−
2
View file @
5b3865a0
...
...
@@ -8,6 +8,7 @@ Definition iprod_insert `{∀ x x' : A, Decision (x = x')} {B : A → cofeT}
(
x
:
A
)
(
y
:
B
x
)
(
f
:
iprod
B
)
:
iprod
B
:=
λ
x'
,
match
decide
(
x
=
x'
)
with
left
H
=>
eq_rect
_
B
y
_
H
|
right
_
=>
f
x'
end
.
Global
Instance
iprod_empty
{
A
}
{
B
:
A
→
cofeT
}
`{
∀
x
,
Empty
(
B
x
)}
:
Empty
(
iprod
B
)
:=
λ
x
,
∅.
Definition
iprod_lookup_empty
{
A
}
{
B
:
A
→
cofeT
}
`{
∀
x
,
Empty
(
B
x
)}
x
:
∅
x
=
∅
:=
eq_refl
.
Definition
iprod_singleton
`{
∀
x
x'
:
A
,
Decision
(
x
=
x'
)}
{
B
:
A
→
cofeT
}
`{
∀
x
:
A
,
Empty
(
B
x
)}
(
x
:
A
)
(
y
:
B
x
)
:
iprod
B
:=
iprod_insert
x
y
∅.
...
...
@@ -40,24 +41,54 @@ Section iprod_cofe.
Qed
.
Canonical
Structure
iprodC
:
cofeT
:=
CofeT
iprod_cofe_mixin
.
(** Properties of iprod_insert. *)
Context
`{
∀
x
x'
:
A
,
Decision
(
x
=
x'
)}
.
Global
Instance
iprod_insert_ne
x
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
)
(
iprod_insert
x
)
.
Proof
.
intros
y1
y2
?
f1
f2
?
x'
;
rewrite
/
iprod_insert
.
by
destruct
(
decide
_)
as
[[]|]
.
Qed
.
Global
Instance
iprod_insert_proper
x
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
(
iprod_insert
x
)
:=
ne_proper_2
_
.
Lemma
iprod_lookup_insert
f
x
y
:
(
iprod_insert
x
y
f
)
x
=
y
.
Proof
.
rewrite
/
iprod_insert
;
destruct
(
decide
_)
as
[
Hx
|];
last
done
.
by
rewrite
(
proof_irrel
Hx
eq_refl
)
.
Qed
.
Lemma
iprod_lookup_insert_ne
f
x
x'
y
:
x
≠
x'
→
(
iprod_insert
x
y
f
)
x'
=
f
x'
.
Proof
.
by
rewrite
/
iprod_insert
;
destruct
(
decide
_)
.
Qed
.
Global
Instance
iprod_lookup_timeless
f
x
:
Timeless
f
→
Timeless
(
f
x
)
.
Proof
.
intros
?
y
Hf
.
cut
(
f
≡
iprod_insert
x
y
f
)
.
{
move
=>{
Hf
}
Hf
.
by
rewrite
(
Hf
x
)
iprod_lookup_insert
.
}
apply
timeless
;
first
by
apply
_
.
move
=>
x'
.
destruct
(
decide
(
x
=
x'
))
.
-
subst
x'
.
rewrite
iprod_lookup_insert
;
done
.
-
rewrite
iprod_lookup_insert_ne
//.
Qed
.
Global
Instance
iprod_insert_timeless
f
x
y
:
Timeless
f
→
Timeless
y
→
Timeless
(
iprod_insert
x
y
f
)
.
Proof
.
intros
??
g
Heq
x'
.
destruct
(
decide
(
x
=
x'
))
.
-
subst
x'
.
rewrite
iprod_lookup_insert
.
apply
(
timeless
_)
.
rewrite
-
(
Heq
x
)
iprod_lookup_insert
;
done
.
-
rewrite
iprod_lookup_insert_ne
//.
apply
(
timeless
_)
.
rewrite
-
(
Heq
x'
)
iprod_lookup_insert_ne
;
done
.
Qed
.
(** Properties of iprod_singletom. *)
Context
`{
∀
x
:
A
,
Empty
(
B
x
)}
.
Global
Instance
iprod_singleton_ne
x
n
:
Proper
(
dist
n
==>
dist
n
)
(
iprod_singleton
x
)
.
...
...
@@ -69,6 +100,14 @@ Section iprod_cofe.
Lemma
iprod_lookup_singleton_ne
x
x'
y
:
x
≠
x'
→
(
iprod_singleton
x
y
)
x'
=
∅.
Proof
.
intros
;
by
rewrite
/
iprod_singleton
iprod_lookup_insert_ne
.
Qed
.
Context
`{
∀
x
:
A
,
Timeless
(
∅
:
B
x
)}
.
Instance
iprod_empty_timeless
:
Timeless
(
∅
:
iprod
B
)
.
Proof
.
intros
f
Hf
x
.
by
apply
(
timeless
_)
.
Qed
.
Global
Instance
iprod_singleton_timeless
x
(
y
:
B
x
)
:
Timeless
y
→
Timeless
(
iprod_singleton
x
y
)
:=
_
.
End
iprod_cofe
.
Arguments
iprodC
{_}
_
.
...
...
@@ -148,7 +187,7 @@ Section iprod_cmra.
*
by
intros
f
Hf
x
;
apply
(
timeless
_)
.
Qed
.
(** Properties of iprod_
update
. *)
(** Properties of iprod_
insert
. *)
Context
`{
∀
x
x'
:
A
,
Decision
(
x
=
x'
)}
.
Lemma
iprod_insert_updateP
x
(
P
:
B
x
→
Prop
)
(
Q
:
iprod
B
→
Prop
)
g
y1
:
...
...
@@ -168,7 +207,6 @@ Section iprod_cmra.
iprod_insert
x
y1
g
~~>:
λ
g'
,
∃
y2
,
g'
=
iprod_insert
x
y2
g
∧
P
y2
.
Proof
.
eauto
using
iprod_insert_updateP
.
Qed
.
Lemma
iprod_insert_update
g
x
y1
y2
:
y1
~~>
y2
→
iprod_insert
x
y1
g
~~>
iprod_insert
x
y2
g
.
Proof
.
rewrite
!
cmra_update_updateP
;
...
...
@@ -189,6 +227,15 @@ Section iprod_cmra.
-
move
=>
Hm
.
move
:
(
Hm
x
)
.
by
rewrite
iprod_lookup_singleton
.
Qed
.
Lemma
iprod_unit_singleton
x
(
y
:
B
x
)
:
unit
(
iprod_singleton
x
y
)
≡
iprod_singleton
x
(
unit
y
)
.
Proof
.
move
=>
x'
.
rewrite
iprod_lookup_unit
.
destruct
(
decide
(
x
=
x'
))
.
-
subst
x'
.
by
rewrite
!
iprod_lookup_singleton
.
-
rewrite
!
iprod_lookup_singleton_ne
//
;
[]
.
by
apply
cmra_unit_empty
.
Qed
.
Lemma
iprod_op_singleton
(
x
:
A
)
(
y1
y2
:
B
x
)
:
iprod_singleton
x
y1
⋅
iprod_singleton
x
y2
≡
iprod_singleton
x
(
y1
⋅
y2
)
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/global_cmra.v
+
19
−
5
View file @
5b3865a0
...
...
@@ -39,6 +39,22 @@ Proof.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
Lemma
globalC_unit
γ
a
:
unit
(
to_globalC
i
γ
a
)
≡
to_globalC
i
γ
(
unit
a
)
.
Proof
.
rewrite
/
to_globalC
.
rewrite
iprod_unit_singleton
map_unit_singleton
.
apply
iprod_singleton_proper
,
(
fin_maps
.
singleton_proper
(
M
:=
gmap
_))
.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
Global
Instance
globalC_timeless
γ
m
:
Timeless
m
→
Timeless
(
to_globalC
i
γ
m
)
.
Proof
.
rewrite
/
to_globalC
=>
?
.
apply
iprod_singleton_timeless
,
map_singleton_timeless
.
by
rewrite
/
to_Σ
;
destruct
inG
.
Qed
.
(* Properties of own *)
Global
Instance
own_ne
γ
n
:
Proper
(
dist
n
==>
dist
n
)
(
own
i
γ
)
.
...
...
@@ -69,9 +85,7 @@ Proof.
Qed
.
Lemma
always_own_unit
γ
m
:
(
□
own
i
γ
(
unit
m
))
%
I
≡
own
i
γ
(
unit
m
)
.
Proof
.
rewrite
/
own
.
Admitted
.
Proof
.
rewrite
/
own
-
globalC_unit
.
by
apply
always_ownG_unit
.
Qed
.
Lemma
own_valid
γ
m
:
(
own
i
γ
m
)
⊑
(
✓
m
)
.
Proof
.
...
...
@@ -84,7 +98,7 @@ Proof. apply (uPred.always_entails_r' _ _), own_valid. Qed.
Global
Instance
ownG_timeless
γ
m
:
Timeless
m
→
TimelessP
(
own
i
γ
m
)
.
Proof
.
intros
.
apply
ownG_timeless
.
Admitt
ed
.
intros
.
apply
ownG_timeless
.
apply
_
.
Q
ed
.
End
global
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment