Skip to content
Snippets Groups Projects
Commit 3321a5f7 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Make validy lemmas for `excl_auth` more consistent with `auth`.

- Rename `excl_auth_frag_validN_op_1_l` into `excl_auth_frag_op_validN` and
  `excl_auth_frag_valid_op_1_l` into `excl_auth_frag_op_valid` (similar to
  `auth_auth_op_valid`, and make them bi-implications.
- Add `excl_auth_auth_op_validN` and `excl_auth_auth_op_valid`
parent 2f866db4
No related branches found
No related tags found
No related merge requests found
......@@ -59,9 +59,14 @@ Section excl_auth.
Lemma excl_auth_agree_L `{!LeibnizEquiv A} a b : (E a E b) a = b.
Proof. intros. by apply leibniz_equiv, excl_auth_agree. Qed.
Lemma excl_auth_frag_validN_op_1_l n a b : {n} (E a E b) False.
Lemma excl_auth_auth_op_validN n a b : {n} (E a E b) False.
Proof. apply auth_auth_op_validN. Qed.
Lemma excl_auth_auth_op_valid a b : (E a E b) False.
Proof. apply auth_auth_op_valid. Qed.
Lemma excl_auth_frag_op_validN n a b : {n} (E a E b) False.
Proof. by rewrite -auth_frag_op auth_frag_validN. Qed.
Lemma excl_auth_frag_valid_op_1_l a b : (E a E b) False.
Lemma excl_auth_frag_op_valid a b : (E a E b) False.
Proof. by rewrite -auth_frag_op auth_frag_valid. Qed.
Lemma excl_auth_update a b a' : E a E b ~~> E a' E a'.
......
......@@ -100,7 +100,7 @@ Section lifting.
Qed.
Lemma ownP_state_twice σ1 σ2 : ownP σ1 ownP σ2 False.
Proof.
rewrite /ownP -own_op own_valid. by iIntros (?%excl_auth_frag_valid_op_1_l).
rewrite /ownP -own_op own_valid. by iIntros (?%excl_auth_frag_op_valid).
Qed.
Global Instance ownP_timeless σ : Timeless (@ownP Λ Σ _ σ).
Proof. rewrite /ownP; apply _. Qed.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment