Forked from
Iris / Iris
2127 commits behind the upstream repository.
own.v 16.78 KiB
From iris.algebra Require Import functions gmap proofmode_classes.
From iris.proofmode Require Import classes.
From iris.base_logic.lib Require Export iprop.
From iris Require Import options.
Import uPred.
(** The class [inG Σ A] expresses that the CMRA [A] is in the list of functors
[Σ]. This class is similar to the [subG] class, but written down in terms of
individual CMRAs instead of (lists of) CMRA *functors*. This additional class is
needed because Coq is otherwise unable to solve type class constraints due to
higher-order unification problems. *)
Class inG (Σ : gFunctors) (A : cmraT) := InG {
inG_id : gid Σ;
inG_apply := rFunctor_apply (gFunctors_lookup Σ inG_id);
inG_prf : A = inG_apply (iPropO Σ) _;
}.
Arguments inG_id {_ _} _.
Arguments inG_apply {_ _} _ _ {_}.
(** We use the mode [-] for [Σ] since there is always a unique [Σ]. We use the
mode [!] for [A] since we can have multiple [inG]s for different [A]s, so we do
not want Coq to pick one arbitrarily. *)
Hint Mode inG - ! : typeclass_instances.
Lemma subG_inG Σ (F : gFunctor) : subG F Σ → inG Σ (rFunctor_apply F (iPropO Σ)).
Proof. move=> /(_ 0%fin) /= [j ->]. by exists j. Qed.
(** This tactic solves the usual obligations "subG ? Σ → {in,?}G ? Σ" *)
Ltac solve_inG :=
(* Get all assumptions *)
intros;
(* Unfold the top-level xΣ. We need to support this to be a function. *)
lazymatch goal with
| H : subG (?xΣ _ _ _ _) _ |- _ => try unfold xΣ in H
| H : subG (?xΣ _ _ _) _ |- _ => try unfold xΣ in H
| H : subG (?xΣ _ _) _ |- _ => try unfold xΣ in H
| H : subG (?xΣ _) _ |- _ => try unfold xΣ in H
| H : subG ?xΣ _ |- _ => try unfold xΣ in H
end;
(* Take apart subG for non-"atomic" lists *)
repeat match goal with
| H : subG (gFunctors.app _ _) _ |- _ => apply subG_inv in H; destruct H
end;
(* Try to turn singleton subG into inG; but also keep the subG for typeclass
resolution -- to keep them, we put them onto the goal. *)
repeat match goal with
| H : subG _ _ |- _ => move:(H); (apply subG_inG in H || clear H)
end;
(* Again get all assumptions and simplify the functors *)
intros; simpl in *;
(* We support two kinds of goals: Things convertible to inG;
and records with inG and typeclass fields. Try to solve the
first case. *)
try assumption;
(* That didn't work, now we're in for the second case. *)
split; (assumption || by apply _).
(** * Definition of the connective [own] *)
Local Definition inG_unfold {Σ A} {i : inG Σ A} :
inG_apply i (iPropO Σ) -n> inG_apply i (iPrePropO Σ) :=
rFunctor_map _ (iProp_fold, iProp_unfold).
Local Definition inG_fold {Σ A} {i : inG Σ A} :
inG_apply i (iPrePropO Σ) -n> inG_apply i (iPropO Σ) :=
rFunctor_map _ (iProp_unfold, iProp_fold).
Local Definition iRes_singleton {Σ A} {i : inG Σ A} (γ : gname) (a : A) : iResUR Σ :=
discrete_fun_singleton (inG_id i)
{[ γ := inG_unfold (cmra_transport inG_prf a) ]}.
Instance: Params (@iRes_singleton) 4 := {}.
Local Definition own_def `{!inG Σ A} (γ : gname) (a : A) : iProp Σ :=
uPred_ownM (iRes_singleton γ a).
Local Definition own_aux : seal (@own_def). Proof. by eexists. Qed.
Definition own := own_aux.(unseal).
Arguments own {Σ A _} γ a.
Local Definition own_eq : @own = @own_def := own_aux.(seal_eq).
Local Instance: Params (@own) 4 := {}.
(** * Properties about ghost ownership *)
Section global.
Context `{i : !inG Σ A}.
Implicit Types a : A.
(** ** Properties of [iRes_singleton] *)
Local Lemma inG_unfold_fold (x : inG_apply i (iPrePropO Σ)) :
inG_unfold (inG_fold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split=> ?; apply iProp_unfold_fold.
Qed.
Local Lemma inG_fold_unfold (x : inG_apply i (iPropO Σ)) :
inG_fold (inG_unfold x) ≡ x.
Proof.
rewrite /inG_unfold /inG_fold -rFunctor_map_compose -{2}[x]rFunctor_map_id.
apply (ne_proper (rFunctor_map _)); split=> ?; apply iProp_fold_unfold.
Qed.
Local Lemma inG_unfold_validN n (x : inG_apply i (iPropO Σ)) :
✓{n} (inG_unfold x) ↔ ✓{n} x.
Proof.
split; [|apply (cmra_morphism_validN _)].
move=> /(cmra_morphism_validN inG_fold). by rewrite inG_fold_unfold.
Qed.
Local Instance iRes_singleton_ne γ : NonExpansive (@iRes_singleton Σ A _ γ).
Proof. by intros n a a' Ha; apply discrete_fun_singleton_ne; rewrite Ha. Qed.
Local Lemma iRes_singleton_validI γ a : ✓ (iRes_singleton γ a) ⊢@{iPropI Σ} ✓ a.
Proof.
rewrite /iRes_singleton.
rewrite discrete_fun_validI (forall_elim (inG_id i)) discrete_fun_lookup_singleton.
rewrite singleton_validI.
trans (✓ cmra_transport inG_prf a : iProp Σ)%I; last by destruct inG_prf.
apply valid_entails=> n. apply inG_unfold_validN.
Qed.
Local Lemma iRes_singleton_op γ a1 a2 :
iRes_singleton γ (a1 ⋅ a2) ≡ iRes_singleton γ a1 ⋅ iRes_singleton γ a2.
Proof.
rewrite /iRes_singleton discrete_fun_singleton_op singleton_op cmra_transport_op.
f_equiv. apply: singletonM_proper. apply (cmra_morphism_op _).
Qed.
Local Instance iRes_singleton_discrete γ a :
Discrete a → Discrete (iRes_singleton γ a).
Proof.
intros ?. rewrite /iRes_singleton.
apply discrete_fun_singleton_discrete, gmap_singleton_discrete; [apply _|].
intros x Hx. assert (cmra_transport inG_prf a ≡ inG_fold x) as Ha.
{ apply (discrete _). by rewrite -Hx inG_fold_unfold. }
by rewrite Ha inG_unfold_fold.
Qed.
Local Instance iRes_singleton_core_id γ a :
CoreId a → CoreId (iRes_singleton γ a).
Proof.
intros. apply discrete_fun_singleton_core_id, gmap_singleton_core_id.
by rewrite /CoreId -cmra_morphism_pcore core_id.
Qed.
Local Lemma later_internal_eq_iRes_singleton γ a r :
▷ (r ≡ iRes_singleton γ a) ⊢@{iPropI Σ}
◇ ∃ b r', r ≡ iRes_singleton γ b ⋅ r' ∧ ▷ (a ≡ b).
Proof.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite (f_equivI (λ r : iResUR Σ, r (inG_id i) !! γ) r).
rewrite {1}/iRes_singleton discrete_fun_lookup_singleton lookup_singleton.
rewrite option_equivI. case Hb: (r (inG_id _) !! γ)=> [b|]; last first.
{ by rewrite /bi_except_0 -or_intro_l. }
rewrite -except_0_intro.
rewrite -(exist_intro (cmra_transport (eq_sym inG_prf) (inG_fold b))).
rewrite -(exist_intro (discrete_fun_insert (inG_id _) (delete γ (r (inG_id i))) r)).
apply and_intro.
- apply equiv_internal_eq. rewrite /iRes_singleton.
rewrite cmra_transport_trans eq_trans_sym_inv_l /=.
intros i'. rewrite discrete_fun_lookup_op.
destruct (decide (i' = inG_id i)) as [->|?].
+ rewrite discrete_fun_lookup_insert discrete_fun_lookup_singleton.
intros γ'. rewrite lookup_op. destruct (decide (γ' = γ)) as [->|?].
* by rewrite lookup_singleton lookup_delete Hb inG_unfold_fold.
* by rewrite lookup_singleton_ne // lookup_delete_ne // left_id.
+ rewrite discrete_fun_lookup_insert_ne //.
by rewrite discrete_fun_lookup_singleton_ne // left_id.
- apply later_mono. rewrite (f_equivI inG_fold) inG_fold_unfold.
apply: (internal_eq_rewrite' _ _ (λ b, a ≡ cmra_transport (eq_sym inG_prf) b)%I);
[solve_proper|apply internal_eq_sym|].
rewrite cmra_transport_trans eq_trans_sym_inv_r /=. apply internal_eq_refl.
Qed.
(** ** Properties of [own] *)
Global Instance own_ne γ : NonExpansive (@own Σ A _ γ).
Proof. rewrite !own_eq. solve_proper. Qed.
Global Instance own_proper γ :
Proper ((≡) ==> (⊣⊢)) (@own Σ A _ γ) := ne_proper _.
Lemma own_op γ a1 a2 : own γ (a1 ⋅ a2) ⊣⊢ own γ a1 ∗ own γ a2.
Proof. by rewrite !own_eq /own_def -ownM_op iRes_singleton_op. Qed.
Lemma own_mono γ a1 a2 : a2 ≼ a1 → own γ a1 ⊢ own γ a2.
Proof. move=> [c ->]. by rewrite own_op sep_elim_l. Qed.
Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ).
Proof. intros a1 a2. apply own_mono. Qed.
Lemma own_valid γ a : own γ a ⊢ ✓ a.
Proof. by rewrite !own_eq /own_def ownM_valid iRes_singleton_validI. Qed.
Lemma own_valid_2 γ a1 a2 : own γ a1 -∗ own γ a2 -∗ ✓ (a1 ⋅ a2).
Proof. apply wand_intro_r. by rewrite -own_op own_valid. Qed.
Lemma own_valid_3 γ a1 a2 a3 : own γ a1 -∗ own γ a2 -∗ own γ a3 -∗ ✓ (a1 ⋅ a2 ⋅ a3).
Proof. do 2 apply wand_intro_r. by rewrite -!own_op own_valid. Qed.
Lemma own_valid_r γ a : own γ a ⊢ own γ a ∗ ✓ a.
Proof. apply: bi.persistent_entails_r. apply own_valid. Qed.
Lemma own_valid_l γ a : own γ a ⊢ ✓ a ∗ own γ a.
Proof. by rewrite comm -own_valid_r. Qed.
Global Instance own_timeless γ a : Discrete a → Timeless (own γ a).
Proof. rewrite !own_eq /own_def. apply _. Qed.
Global Instance own_core_persistent γ a : CoreId a → Persistent (own γ a).
Proof. rewrite !own_eq /own_def; apply _. Qed.
Lemma later_own γ a : ▷ own γ a -∗ ◇ ∃ b, own γ b ∧ ▷ (a ≡ b).
Proof.
rewrite own_eq /own_def later_ownM. apply exist_elim=> r.
assert (NonExpansive (λ r : iResUR Σ, r (inG_id i) !! γ)).
{ intros n r1 r2 Hr. f_equiv. by specialize (Hr (inG_id i)). }
rewrite internal_eq_sym later_internal_eq_iRes_singleton.
rewrite (except_0_intro (uPred_ownM r)) -except_0_and. f_equiv.
rewrite and_exist_l. f_equiv=> b. rewrite and_exist_l. apply exist_elim=> r'.
rewrite assoc. apply and_mono_l.
etrans; [|apply ownM_mono, (cmra_included_l _ r')].
eapply (internal_eq_rewrite' _ _ uPred_ownM _); [apply and_elim_r|].
apply and_elim_l.
Qed.
(** ** Allocation *)
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma own_alloc_strong_dep (f : gname → A) (P : gname → Prop) :
pred_infinite P →
(∀ γ, P γ → ✓ (f γ)) →
⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ (f γ).
Proof.
intros HPinf Hf.
rewrite -(bupd_mono (∃ m, ⌜∃ γ, P γ ∧ m = iRes_singleton γ (f γ)⌝ ∧ uPred_ownM m)%I).
- rewrite /bi_emp_valid (ownM_unit emp).
apply bupd_ownM_updateP, (discrete_fun_singleton_updateP_empty _ (λ m, ∃ γ,
m = {[ γ := inG_unfold (cmra_transport inG_prf (f γ)) ]} ∧ P γ));
[|naive_solver].
apply (alloc_updateP_strong_dep _ P _ (λ γ,
inG_unfold (cmra_transport inG_prf (f γ)))); [done| |naive_solver].
intros γ _ ?.
by apply (cmra_morphism_valid inG_unfold), cmra_transport_valid, Hf.
- apply exist_elim=>m; apply pure_elim_l=>-[γ [Hfresh ->]].
by rewrite !own_eq /own_def -(exist_intro γ) pure_True // left_id.
Qed.
Lemma own_alloc_cofinite_dep (f : gname → A) (G : gset gname) :
(∀ γ, γ ∉ G → ✓ (f γ)) → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ (f γ).
Proof.
intros Ha.
apply (own_alloc_strong_dep f (λ γ, γ ∉ G))=> //.
apply (pred_infinite_set (C:=gset gname)).
intros E. set (γ := fresh (G ∪ E)).
exists γ. apply not_elem_of_union, is_fresh.
Qed.
Lemma own_alloc_dep (f : gname → A) :
(∀ γ, ✓ (f γ)) → ⊢ |==> ∃ γ, own γ (f γ).
Proof.
intros Ha. rewrite /bi_emp_valid (own_alloc_cofinite_dep f ∅) //; [].
apply bupd_mono, exist_mono=>?. apply: sep_elim_r.
Qed.
Lemma own_alloc_strong a (P : gname → Prop) :
pred_infinite P →
✓ a → ⊢ |==> ∃ γ, ⌜P γ⌝ ∗ own γ a.
Proof. intros HP Ha. eapply own_alloc_strong_dep with (f := λ _, a); eauto. Qed.
Lemma own_alloc_cofinite a (G : gset gname) :
✓ a → ⊢ |==> ∃ γ, ⌜γ ∉ G⌝ ∗ own γ a.
Proof. intros Ha. eapply own_alloc_cofinite_dep with (f := λ _, a); eauto. Qed.
Lemma own_alloc a : ✓ a → ⊢ |==> ∃ γ, own γ a.
Proof. intros Ha. eapply own_alloc_dep with (f := λ _, a); eauto. Qed.
(** ** Frame preserving updates *)
Lemma own_updateP P γ a : a ~~>: P → own γ a ==∗ ∃ a', ⌜P a'⌝ ∗ own γ a'.
Proof.
intros Hupd. rewrite !own_eq.
rewrite -(bupd_mono (∃ m,
⌜ ∃ a', m = iRes_singleton γ a' ∧ P a' ⌝ ∧ uPred_ownM m)%I).
- apply bupd_ownM_updateP, (discrete_fun_singleton_updateP _ (λ m, ∃ x,
m = {[ γ := x ]} ∧ ∃ x',
x = inG_unfold x' ∧ ∃ a',
x' = cmra_transport inG_prf a' ∧ P a')); [|naive_solver].
apply singleton_updateP', (iso_cmra_updateP' inG_fold).
{ apply inG_unfold_fold. }
{ apply (cmra_morphism_op _). }
{ apply inG_unfold_validN. }
by apply cmra_transport_updateP'.
- apply exist_elim=> m; apply pure_elim_l=> -[a' [-> HP]].
rewrite -(exist_intro a'). rewrite -persistent_and_sep.
by apply and_intro; [apply pure_intro|].
Qed.
Lemma own_update γ a a' : a ~~> a' → own γ a ==∗ own γ a'.
Proof.
intros; rewrite (own_updateP (a' =.)); last by apply cmra_update_updateP.
apply bupd_mono, exist_elim=> a''. rewrite sep_and. apply pure_elim_l=> -> //.
Qed.
Lemma own_update_2 γ a1 a2 a' :
a1 ⋅ a2 ~~> a' → own γ a1 -∗ own γ a2 ==∗ own γ a'.
Proof. intros. apply wand_intro_r. rewrite -own_op. by apply own_update. Qed.
Lemma own_update_3 γ a1 a2 a3 a' :
a1 ⋅ a2 ⋅ a3 ~~> a' → own γ a1 -∗ own γ a2 -∗ own γ a3 ==∗ own γ a'.
Proof. intros. do 2 apply wand_intro_r. rewrite -!own_op. by apply own_update. Qed.
End global.
Arguments own_valid {_ _} [_] _ _.
Arguments own_valid_2 {_ _} [_] _ _ _.
Arguments own_valid_3 {_ _} [_] _ _ _ _.
Arguments own_valid_l {_ _} [_] _ _.
Arguments own_valid_r {_ _} [_] _ _.
Arguments own_updateP {_ _} [_] _ _ _ _.
Arguments own_update {_ _} [_] _ _ _ _.
Arguments own_update_2 {_ _} [_] _ _ _ _ _.
Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
Lemma own_unit A `{i : !inG Σ (A:ucmraT)} γ : ⊢ |==> own γ (ε:A).
Proof.
rewrite /bi_emp_valid (ownM_unit emp) !own_eq /own_def.
apply bupd_ownM_update, discrete_fun_singleton_update_empty.
apply (alloc_unit_singleton_update (inG_unfold (cmra_transport inG_prf ε))).
- apply (cmra_morphism_valid _), cmra_transport_valid, ucmra_unit_valid.
- intros x. rewrite -(inG_unfold_fold x) -(cmra_morphism_op inG_unfold).
f_equiv. generalize (inG_fold x)=> x'.
destruct inG_prf=> /=. by rewrite left_id.
- done.
Qed.
(** Big op class instances *)
Section big_op_instances.
Context `{!inG Σ (A:ucmraT)}.
Global Instance own_cmra_sep_homomorphism γ :
WeakMonoidHomomorphism op uPred_sep (≡) (own γ).
Proof. split; try apply _. apply own_op. Qed.
Lemma big_opL_own {B} γ (f : nat → B → A) (l : list B) :
l ≠ [] →
own γ ([^op list] k↦x ∈ l, f k x) ⊣⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute1 _). Qed.
Lemma big_opM_own `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
m ≠ ∅ →
own γ ([^op map] k↦x ∈ m, g k x) ⊣⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute1 _). Qed.
Lemma big_opS_own `{Countable B} γ (g : B → A) (X : gset B) :
X ≠ ∅ →
own γ ([^op set] x ∈ X, g x) ⊣⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute1 _). Qed.
Lemma big_opMS_own `{Countable B} γ (g : B → A) (X : gmultiset B) :
X ≠ ∅ →
own γ ([^op mset] x ∈ X, g x) ⊣⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute1 _). Qed.
Global Instance own_cmra_sep_entails_homomorphism γ :
MonoidHomomorphism op uPred_sep (⊢) (own γ).
Proof.
split; [split|]; try apply _.
- intros. by rewrite own_op.
- apply (affine _).
Qed.
Lemma big_opL_own_1 {B} γ (f : nat → B → A) (l : list B) :
own γ ([^op list] k↦x ∈ l, f k x) ⊢ [∗ list] k↦x ∈ l, own γ (f k x).
Proof. apply (big_opL_commute _). Qed.
Lemma big_opM_own_1 `{Countable K} {B} γ (g : K → B → A) (m : gmap K B) :
own γ ([^op map] k↦x ∈ m, g k x) ⊢ [∗ map] k↦x ∈ m, own γ (g k x).
Proof. apply (big_opM_commute _). Qed.
Lemma big_opS_own_1 `{Countable B} γ (g : B → A) (X : gset B) :
own γ ([^op set] x ∈ X, g x) ⊢ [∗ set] x ∈ X, own γ (g x).
Proof. apply (big_opS_commute _). Qed.
Lemma big_opMS_own_1 `{Countable B} γ (g : B → A) (X : gmultiset B) :
own γ ([^op mset] x ∈ X, g x) ⊢ [∗ mset] x ∈ X, own γ (g x).
Proof. apply (big_opMS_commute _). Qed.
End big_op_instances.
(** Proofmode class instances *)
Section proofmode_instances.
Context `{!inG Σ A}.
Implicit Types a b : A.
Global Instance into_sep_own γ a b1 b2 :
IsOp a b1 b2 → IntoSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoSep (is_op a) own_op. Qed.
Global Instance into_and_own p γ a b1 b2 :
IsOp a b1 b2 → IntoAnd p (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /IntoAnd (is_op a) own_op sep_and. Qed.
Global Instance from_sep_own γ a b1 b2 :
IsOp a b1 b2 → FromSep (own γ a) (own γ b1) (own γ b2).
Proof. intros. by rewrite /FromSep -own_op -is_op. Qed.
Global Instance from_and_own_persistent γ a b1 b2 :
IsOp a b1 b2 → TCOr (CoreId b1) (CoreId b2) →
FromAnd (own γ a) (own γ b1) (own γ b2).
Proof.
intros ? Hb. rewrite /FromAnd (is_op a) own_op.
destruct Hb; by rewrite persistent_and_sep.
Qed.
End proofmode_instances.