Skip to content
Snippets Groups Projects
Commit 099eb48a authored by Zhen Zhang's avatar Zhen Zhang
Browse files

cleanups

parent 3f8c5a06
No related branches found
No related tags found
No related merge requests found
......@@ -34,22 +34,7 @@ Definition mk_srv : val :=
release "l";;
"ret".
(* play with some algebraic structure to see what fit ... *)
Definition srvR := prodR fracR (dec_agreeR val).
Lemma srv_coincide: (x1 x2: val) (q1 q2: Qp), ((q1, DecAgree x1) (q2, DecAgree x2)) x1 = x2.
Proof.
intros x1 x2 q1 q2 H. destruct (decide (x1 = x2))=>//.
exfalso. destruct H as [H1 H2].
simpl in H2. apply dec_agree_op_inv in H2.
by inversion H2.
Qed.
Lemma srv_update: (x1 x2: val), (1%Qp, DecAgree x1) ~~> (1%Qp, DecAgree x2).
Proof. intros. by apply cmra_update_exclusive. Qed.
(* define the gFunctors *)
Class srvG Σ := FlatG { srv_tokG :> inG Σ srvR }.
Definition srvΣ : gFunctors := #[GFunctor (constRF srvR)].
......
......@@ -106,7 +106,7 @@ Section generic.
Definition gFrag (γ: gname) g : iProp Σ := own γ (gFragR g).
Definition gFull (γ: gname) g : iProp Σ := own γ (gFullR g).
Global Instance frag_timeless γ g: TimelessP (@own Σ syncR sync_tokG γ (gFragR g)).
Global Instance frag_timeless γ g: TimelessP (gFrag γ g).
Proof. apply _. Qed.
Global Instance full_timeless γ g: TimelessP (gFull γ g).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment