Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Paolo G. Giarrusso
iris
Commits
02bc52b4
Commit
02bc52b4
authored
Jan 08, 2017
by
Robbert Krebbers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Seal off iRes using a module.
This makes lambdarust 1 min (=7%) faster.
parent
8b563357
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
74 additions
and
36 deletions
+74
-36
theories/base_logic/lib/iprop.v
theories/base_logic/lib/iprop.v
+62
-4
theories/base_logic/lib/own.v
theories/base_logic/lib/own.v
+12
-32
No files found.
theories/base_logic/lib/iprop.v
View file @
02bc52b4
From
iris
.
base_logic
Require
Export
base_logic
.
From
iris
.
algebra
Require
Import
iprod
gmap
.
From
iris
.
algebra
Require
cofe_solver
.
Import
uPred
.
Set
Default
Proof
Using
"Type"
.
(** In this file we construct the type [iProp] of propositions of the Iris
...
...
@@ -115,10 +116,30 @@ the construction, this way we are sure we do not use any properties of the
construction, and also avoid Coq from blindly unfolding it. *)
Module
Type
iProp_solution_sig
.
Parameter
iPreProp
:
gFunctors
→
ofeT
.
Definition
iResUR
(
Σ
:
gFunctors
)
:
ucmraT
:
=
iprodUR
(
λ
i
,
gmapUR
gname
(
Σ
i
(
iPreProp
Σ
))).
Notation
iProp
Σ
:
=
(
uPredC
(
iResUR
Σ
)).
Parameter
iResUR
:
gFunctors
→
ucmraT
.
Parameter
iRes_singleton
:
∀
{
Σ
}
(
i
:
gid
Σ
)
(
γ
:
gname
)
(
a
:
Σ
i
(
iPreProp
Σ
)),
iResUR
Σ
.
Parameter
iRes_ne
:
∀
Σ
(
i
:
gid
Σ
)
γ
,
NonExpansive
(
iRes_singleton
i
γ
).
Parameter
iRes_op
:
∀
Σ
(
i
:
gid
Σ
)
γ
a1
a2
,
iRes_singleton
i
γ
(
a1
⋅
a2
)
≡
iRes_singleton
i
γ
a1
⋅
iRes_singleton
i
γ
a2
.
Parameter
iRes_valid
:
∀
{
M
}
Σ
(
i
:
gid
Σ
)
γ
a
,
✓
iRes_singleton
i
γ
a
-
∗
(
✓
a
:
uPred
M
).
Parameter
iRes_timeless
:
∀
Σ
(
i
:
gid
Σ
)
γ
a
,
Timeless
a
→
Timeless
(
iRes_singleton
i
γ
a
).
Parameter
iRes_persistent
:
∀
Σ
(
i
:
gid
Σ
)
γ
a
,
Persistent
a
→
Persistent
(
iRes_singleton
i
γ
a
).
Parameter
iRes_updateP
:
∀
Σ
(
i
:
gid
Σ
)
γ
(
P
:
Σ
i
(
iPreProp
Σ
)
→
Prop
)
(
Q
:
iResUR
Σ
→
Prop
)
a
,
a
~~>
:
P
→
(
∀
b
,
P
b
→
Q
(
iRes_singleton
i
γ
b
))
→
iRes_singleton
i
γ
a
~~>
:
Q
.
Parameter
iRes_alloc_strong
:
∀
Σ
(
i
:
gid
Σ
)
(
Q
:
iResUR
Σ
→
Prop
)
(
G
:
gset
gname
)
(
a
:
Σ
i
(
iPreProp
Σ
)),
✓
a
→
(
∀
γ
,
γ
∉
G
→
Q
(
iRes_singleton
i
γ
a
))
→
∅
~~>
:
Q
.
Parameter
iRes_alloc_unit_singleton
:
∀
Σ
(
i
:
gid
Σ
)
u
γ
,
✓
u
→
LeftId
(
≡
)
u
(
⋅
)
→
∅
~~>
iRes_singleton
i
γ
u
.
Notation
iProp
Σ
:
=
(
uPredC
(
iResUR
Σ
)).
Parameter
iProp_unfold
:
∀
{
Σ
},
iProp
Σ
-
n
>
iPreProp
Σ
.
Parameter
iProp_fold
:
∀
{
Σ
},
iPreProp
Σ
-
n
>
iProp
Σ
.
Parameter
iProp_fold_unfold
:
∀
{
Σ
}
(
P
:
iProp
Σ
),
...
...
@@ -135,8 +156,45 @@ Module Export iProp_solution : iProp_solution_sig.
Definition
iPreProp
(
Σ
:
gFunctors
)
:
ofeT
:
=
iProp_result
Σ
.
Definition
iResUR
(
Σ
:
gFunctors
)
:
ucmraT
:
=
iprodUR
(
λ
i
,
gmapUR
gname
(
Σ
i
(
iPreProp
Σ
))).
Notation
iProp
Σ
:
=
(
uPredC
(
iResUR
Σ
)).
Definition
iRes_singleton
{
Σ
}
(
i
:
gid
Σ
)
(
γ
:
gname
)
(
a
:
Σ
i
(
iPreProp
Σ
))
:
iResUR
Σ
:
=
iprod_singleton
i
{[
γ
:
=
a
]}.
Lemma
iRes_ne
Σ
(
i
:
gid
Σ
)
γ
:
NonExpansive
(
iRes_singleton
i
γ
).
Proof
.
by
intros
n
a
a'
Ha
;
apply
iprod_singleton_ne
;
rewrite
Ha
.
Qed
.
Lemma
iRes_op
Σ
(
i
:
gid
Σ
)
γ
a1
a2
:
iRes_singleton
i
γ
(
a1
⋅
a2
)
≡
iRes_singleton
i
γ
a1
⋅
iRes_singleton
i
γ
a2
.
Proof
.
by
rewrite
/
iRes_singleton
iprod_op_singleton
op_singleton
.
Qed
.
Lemma
iRes_valid
{
M
}
Σ
(
i
:
gid
Σ
)
γ
a
:
✓
iRes_singleton
i
γ
a
-
∗
(
✓
a
:
uPred
M
).
Proof
.
rewrite
/
iRes_singleton
iprod_validI
(
forall_elim
i
)
iprod_lookup_singleton
.
by
rewrite
gmap_validI
(
forall_elim
γ
)
lookup_singleton
option_validI
.
Qed
.
Definition
iRes_timeless
Σ
(
i
:
gid
Σ
)
γ
a
:
Timeless
a
→
Timeless
(
iRes_singleton
i
γ
a
)
:
=
_
.
Definition
iRes_persistent
Σ
(
i
:
gid
Σ
)
γ
a
:
Persistent
a
→
Persistent
(
iRes_singleton
i
γ
a
)
:
=
_
.
Lemma
iRes_updateP
Σ
(
i
:
gid
Σ
)
γ
(
P
:
_
→
Prop
)
(
Q
:
iResUR
Σ
→
Prop
)
a
:
a
~~>
:
P
→
(
∀
b
,
P
b
→
Q
(
iRes_singleton
i
γ
b
))
→
iRes_singleton
i
γ
a
~~>
:
Q
.
Proof
.
intros
.
eapply
iprod_singleton_updateP
;
[
by
apply
singleton_updateP'
|
naive_solver
].
Qed
.
Lemma
iRes_alloc_strong
Σ
(
i
:
gid
Σ
)
(
Q
:
_
→
Prop
)
(
G
:
gset
gname
)
a
:
✓
a
→
(
∀
γ
,
γ
∉
G
→
Q
(
iRes_singleton
i
γ
a
))
→
∅
~~>
:
Q
.
Proof
.
intros
Ha
?.
eapply
iprod_singleton_updateP_empty
;
[
eapply
alloc_updateP_strong'
,
Ha
|
naive_solver
].
Qed
.
Lemma
iRes_alloc_unit_singleton
Σ
(
i
:
gid
Σ
)
u
γ
:
✓
u
→
LeftId
(
≡
)
u
(
⋅
)
→
∅
~~>
iRes_singleton
i
γ
u
.
Proof
.
intros
.
by
eapply
iprod_singleton_update_empty
,
alloc_unit_singleton_update
.
Qed
.
Notation
iProp
Σ
:
=
(
uPredC
(
iResUR
Σ
)).
Definition
iProp_unfold
{
Σ
}
:
iProp
Σ
-
n
>
iPreProp
Σ
:
=
solution_fold
(
iProp_result
Σ
).
Definition
iProp_fold
{
Σ
}
:
iPreProp
Σ
-
n
>
iProp
Σ
:
=
solution_unfold
_
.
...
...
theories/base_logic/lib/own.v
View file @
02bc52b4
...
...
@@ -48,12 +48,8 @@ Ltac solve_inG :=
split
;
(
assumption
||
by
apply
_
).
(** * Definition of the connective [own] *)
Definition
iRes_singleton
`
{
i
:
inG
Σ
A
}
(
γ
:
gname
)
(
a
:
A
)
:
iResUR
Σ
:
=
iprod_singleton
(
inG_id
i
)
{[
γ
:
=
cmra_transport
inG_prf
a
]}.
Instance
:
Params
(@
iRes_singleton
)
4
.
Definition
own_def
`
{
inG
Σ
A
}
(
γ
:
gname
)
(
a
:
A
)
:
iProp
Σ
:
=
uPred_ownM
(
iRes_singleton
γ
a
).
uPred_ownM
(
iRes_singleton
(
inG_id
_
)
γ
(
cmra_transport
inG_prf
a
)
).
Definition
own_aux
:
seal
(@
own_def
).
by
eexists
.
Qed
.
Definition
own
{
Σ
A
i
}
:
=
unseal
own_aux
Σ
A
i
.
Definition
own_eq
:
@
own
=
@
own_def
:
=
seal_eq
own_aux
.
...
...
@@ -65,16 +61,6 @@ Section global.
Context
`
{
inG
Σ
A
}.
Implicit
Types
a
:
A
.
(** ** Properties of [iRes_singleton] *)
Global
Instance
iRes_singleton_ne
γ
:
NonExpansive
(@
iRes_singleton
Σ
A
_
γ
).
Proof
.
by
intros
n
a
a'
Ha
;
apply
iprod_singleton_ne
;
rewrite
Ha
.
Qed
.
Lemma
iRes_singleton_op
γ
a1
a2
:
iRes_singleton
γ
(
a1
⋅
a2
)
≡
iRes_singleton
γ
a1
⋅
iRes_singleton
γ
a2
.
Proof
.
by
rewrite
/
iRes_singleton
iprod_op_singleton
op_singleton
cmra_transport_op
.
Qed
.
(** ** Properties of [own] *)
Global
Instance
own_ne
γ
:
NonExpansive
(@
own
Σ
A
_
γ
).
Proof
.
rewrite
!
own_eq
.
solve_proper
.
Qed
.
...
...
@@ -82,7 +68,7 @@ Global Instance own_proper γ :
Proper
((
≡
)
==>
(
⊣
⊢
))
(@
own
Σ
A
_
γ
)
:
=
ne_proper
_
.
Lemma
own_op
γ
a1
a2
:
own
γ
(
a1
⋅
a2
)
⊣
⊢
own
γ
a1
∗
own
γ
a2
.
Proof
.
by
rewrite
!
own_eq
/
own_def
-
ownM_op
iRes_singleton
_op
.
Qed
.
Proof
.
by
rewrite
!
own_eq
/
own_def
-
ownM_op
cmra_transport_op
iRes
_op
.
Qed
.
Lemma
own_mono
γ
a1
a2
:
a2
≼
a1
→
own
γ
a1
⊢
own
γ
a2
.
Proof
.
move
=>
[
c
->].
rewrite
own_op
.
eauto
with
I
.
Qed
.
...
...
@@ -92,13 +78,7 @@ Global Instance own_mono' γ : Proper (flip (≼) ==> (⊢)) (@own Σ A _ γ).
Proof
.
intros
a1
a2
.
apply
own_mono
.
Qed
.
Lemma
own_valid
γ
a
:
own
γ
a
⊢
✓
a
.
Proof
.
rewrite
!
own_eq
/
own_def
ownM_valid
/
iRes_singleton
.
rewrite
iprod_validI
(
forall_elim
(
inG_id
_
))
iprod_lookup_singleton
.
rewrite
gmap_validI
(
forall_elim
γ
)
lookup_singleton
option_validI
.
(* implicit arguments differ a bit *)
by
trans
(
✓
cmra_transport
inG_prf
a
:
iProp
Σ
)%
I
;
last
destruct
inG_prf
.
Qed
.
Proof
.
rewrite
!
own_eq
/
own_def
ownM_valid
iRes_valid
.
by
destruct
inG_prf
.
Qed
.
Lemma
own_valid_2
γ
a1
a2
:
own
γ
a1
-
∗
own
γ
a2
-
∗
✓
(
a1
⋅
a2
).
Proof
.
apply
wand_intro_r
.
by
rewrite
-
own_op
own_valid
.
Qed
.
Lemma
own_valid_3
γ
a1
a2
a3
:
own
γ
a1
-
∗
own
γ
a2
-
∗
own
γ
a3
-
∗
✓
(
a1
⋅
a2
⋅
a3
).
...
...
@@ -120,11 +100,11 @@ Lemma own_alloc_strong a (G : gset gname) :
✓
a
→
(|==>
∃
γ
,
⌜γ
∉
G
⌝
∧
own
γ
a
)%
I
.
Proof
.
intros
Ha
.
rewrite
-(
bupd_mono
(
∃
m
,
⌜
∃
γ
,
γ
∉
G
∧
m
=
iRes_singleton
γ
a
⌝
∧
uPred_ownM
m
)%
I
).
rewrite
-(
bupd_mono
(
∃
m
,
⌜
∃
γ
,
γ
∉
G
∧
m
=
iRes_singleton
(
inG_id
_
)
γ
(
cmra_transport
inG_prf
a
)
⌝
∧
uPred_ownM
m
))%
I
.
-
rewrite
/
uPred_valid
ownM_empty
.
eapply
bupd_ownM_updateP
,
(
iprod_singleton_updateP_empty
(
inG_id
_
))
;
first
(
eapply
alloc_updateP_strong'
,
cmra_transport_valid
,
Ha
)
;
naive_solver
.
eapply
bupd_ownM_updateP
,
iRes_alloc_strong
;
[
eapply
cmra_transport_valid
,
Ha
|
naive_solver
].
-
apply
exist_elim
=>
m
;
apply
pure_elim_l
=>-[
γ
[
Hfresh
->]].
by
rewrite
!
own_eq
/
own_def
-(
exist_intro
γ
)
pure_True
//
left_id
.
Qed
.
...
...
@@ -138,9 +118,10 @@ Qed.
Lemma
own_updateP
P
γ
a
:
a
~~>
:
P
→
own
γ
a
==
∗
∃
a'
,
⌜
P
a'
⌝
∧
own
γ
a'
.
Proof
.
intros
Ha
.
rewrite
!
own_eq
.
rewrite
-(
bupd_mono
(
∃
m
,
⌜
∃
a'
,
m
=
iRes_singleton
γ
a'
∧
P
a'
⌝
∧
uPred_ownM
m
)%
I
).
-
eapply
bupd_ownM_updateP
,
iprod_singleton_updateP
;
first
by
(
eapply
singleton_updateP'
,
cmra_transport_updateP'
,
Ha
).
rewrite
-(
bupd_mono
(
∃
m
,
⌜
∃
a'
,
m
=
iRes_singleton
(
inG_id
_
)
γ
(
cmra_transport
inG_prf
a'
)
∧
P
a'
⌝
∧
uPred_ownM
m
)%
I
).
-
eapply
bupd_ownM_updateP
,
iRes_updateP
;
[
by
apply
cmra_transport_updateP'
|].
naive_solver
.
-
apply
exist_elim
=>
m
;
apply
pure_elim_l
=>-[
a'
[->
HP
]].
rewrite
-(
exist_intro
a'
).
by
apply
and_intro
;
[
apply
pure_intro
|].
...
...
@@ -172,8 +153,7 @@ Arguments own_update_3 {_ _} [_] _ _ _ _ _ _.
Lemma
own_empty
A
`
{
inG
Σ
(
A
:
ucmraT
)}
γ
:
(|==>
own
γ
∅
)%
I
.
Proof
.
rewrite
/
uPred_valid
ownM_empty
!
own_eq
/
own_def
.
apply
bupd_ownM_update
,
iprod_singleton_update_empty
.
apply
(
alloc_unit_singleton_update
(
cmra_transport
inG_prf
∅
))
;
last
done
.
apply
bupd_ownM_update
,
iRes_alloc_unit_singleton
.
-
apply
cmra_transport_valid
,
ucmra_unit_valid
.
-
intros
x
;
destruct
inG_prf
.
by
rewrite
left_id
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment