Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
FloVer
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
AVA
FloVer
Commits
e257e52b
Commit
e257e52b
authored
8 years ago
by
Heiko Becker
Browse files
Options
Downloads
Patches
Plain Diff
Some more type annotations and remove unused lemma
parent
53aba077
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
coq/IntervalValidation.v
+2
-69
2 additions, 69 deletions
coq/IntervalValidation.v
coq/ssaPrgs.v
+2
-1
2 additions, 1 deletion
coq/ssaPrgs.v
with
4 additions
and
70 deletions
coq/IntervalValidation.v
+
2
−
69
View file @
e257e52b
...
...
@@ -21,7 +21,7 @@ Fixpoint freeVars (V:Type) (f:exp V) : list nat:=
|
Binop
o
f1
f2
=>
(
freeVars
V
f1
)
++
(
freeVars
V
f2
)
end
.
Fixpoint
validIntervalbounds
(
e
:
exp
Q
)
(
absenv
:
analysisResult
)
(
P
:
precond
)
validVars
:=
Fixpoint
validIntervalbounds
(
e
:
exp
Q
)
(
absenv
:
analysisResult
)
(
P
:
precond
)
(
validVars
:
NatSet
.
t
)
:=
let
(
intv
,
_
)
:=
absenv
e
in
match
e
with
|
Var
_
v
=>
NatSet
.
mem
v
validVars
...
...
@@ -70,7 +70,7 @@ Fixpoint validIntervalbounds (e:exp Q) (absenv:analysisResult) (P:precond) valid
andb
rec
opres
end
.
Fixpoint
validIntervalboundsCmd
(
f
:
cmd
Q
)
(
absenv
:
analysisResult
)
(
P
:
precond
)
validVars
{
struct
f
}
:
bool
:=
Fixpoint
validIntervalboundsCmd
(
f
:
cmd
Q
)
(
absenv
:
analysisResult
)
(
P
:
precond
)
(
validVars
:
NatSet
.
t
)
:
bool
:=
match
f
with
|
Let
_
x
e
g
=>
validIntervalbounds
e
absenv
P
validVars
&&
...
...
@@ -156,7 +156,6 @@ Qed.
Theorem
validIntervalbounds_sound
(
f
:
exp
Q
)
(
absenv
:
analysisResult
)
(
P
:
precond
)
V
VarEnv
ParamEnv
:
forall
vR
,
(
*
precondValidForExec
P
cenv
->*
)
validIntervalbounds
f
absenv
P
V
=
true
->
(
forall
v
,
NatSet
.
mem
v
V
=
true
->
(
Q2R
(
fst
(
fst
(
absenv
(
Var
Q
v
))))
<=
VarEnv
v
<=
Q2R
(
snd
(
fst
(
absenv
(
Var
Q
v
)))))
%
R
)
->
...
...
@@ -458,72 +457,6 @@ Proof.
rewrite
<-
Q2R_max4
in
valid_div_hi
;
auto
.
}
Qed
.
Theorem
ssaVars_are_sound
(
f
:
cmd
Q
)
freeVars
outVars
(
absenv
:
analysisResult
)
(
v_lo
v_hi
err
:
R
)
VarEnv
ParamEnv
P
TEnv
:
ssaPrg
Q
f
(
freeVars
)
(
outVars
)
->
bstep
(
toRCmd
f
)
VarEnv
ParamEnv
P
0
%
R
(
Nop
R
)
TEnv
->
(
forall
v
,
NatSet
.
mem
v
freeVars
=
true
->
(
Q2R
(
fst
(
fst
(
absenv
(
Var
Q
v
))))
<=
VarEnv
v
<=
Q2R
(
snd
(
fst
(
absenv
(
Var
Q
v
)))))
%
R
)
->
validIntervalboundsCmd
f
absenv
P
(
freeVars
)
=
true
->
forall
v
:
nat
,
NatSet
.
mem
v
outVars
=
true
->
(
Q2R
(
fst
(
fst
(
absenv
(
Var
Q
v
))))
<=
TEnv
v
<=
Q2R
(
snd
(
fst
(
absenv
(
Var
Q
v
)))))
%
R
.
Proof
.
intros
ssa_f
.
revert
VarEnv
.
induction
ssa_f
;
intros
VarEnv
bstep_f
freeVars_sound
validBounds
v
in_outVars
;
unfold
validIntervalbounds
in
validBounds
;
andb_to_prop
validBounds
.
-
(
*
First
rename
auto
-
generated
hyp
names
*
)
rename
L
into
eq_lo
;
rename
R1
into
eq_hi
;
rename
L0
into
validBounds_e
.
inversion
bstep_f
;
subst
.
eapply
IHssa_f
;
eauto
.
+
intros
v1
mem_Vx
.
rewrite
NatSet
.
mem_spec
,
NatSet
.
add_spec
in
mem_Vx
.
unfold
updEnv
.
case_eq
(
v1
=?
x
);
intros
v1_eq_dec
.
*
assert
(
Q2R
(
fst
(
fst
(
absenv
e
)))
<=
v0
<=
Q2R
(
snd
(
fst
(
absenv
e
))))
%
R
as
validIV_e
by
(
eapply
validIntervalbounds_sound
;
eauto
).
rewrite
Nat
.
eqb_eq
in
v1_eq_dec
.
rewrite
v1_eq_dec
.
apply
Qeq_bool_iff
in
eq_lo
.
apply
Qeq_eqR
in
eq_lo
.
apply
Qeq_bool_iff
in
eq_hi
.
apply
Qeq_eqR
in
eq_hi
.
rewrite
<-
eq_lo
,
<-
eq_hi
.
auto
.
*
destruct
mem_Vx
.
{
subst
.
rewrite
Nat
.
eqb_neq
in
v1_eq_dec
.
hnf
in
v1_eq_dec
.
exfalso
.
apply
v1_eq_dec
.
reflexivity
.
}
{
apply
freeVars_sound
.
rewrite
NatSet
.
mem_spec
;
auto
.
}
-
rename
H
into
eq_V_Vterm
.
rewrite
NatSet
.
equal_spec
in
eq_V_Vterm
.
rewrite
NatSet
.
mem_spec
in
in_outVars
.
hnf
in
eq_V_Vterm
.
rewrite
<-
eq_V_Vterm
in
in_outVars
.
rewrite
<-
NatSet
.
mem_spec
in
in_outVars
.
inversion
bstep_f
;
subst
.
unfold
updEnv
.
case_eq
(
v
=?
0
);
intros
v_eq
.
+
assert
(
Q2R
(
fst
(
fst
(
absenv
e
)))
<=
v0
<=
Q2R
(
snd
(
fst
(
absenv
e
))))
%
R
by
(
eapply
validIntervalbounds_sound
;
eauto
).
rename
L0
into
eq_lo
;
rename
R0
into
eq_hi
.
apply
Qeq_bool_iff
in
eq_lo
;
apply
Qeq_eqR
in
eq_lo
.
apply
Qeq_bool_iff
in
eq_hi
;
apply
Qeq_eqR
in
eq_hi
.
rewrite
Nat
.
eqb_eq
in
v_eq
.
subst
.
rewrite
<-
eq_lo
,
<-
eq_hi
.
assumption
.
+
apply
freeVars_sound
;
auto
.
Qed
.
Theorem
validIntervalboundsCmd_sound
(
f
:
cmd
Q
)
(
absenv
:
analysisResult
)
:
forall
VarEnv
ParamEnv
envR
inVars
outVars
elo
ehi
err
P
,
ssaPrg
Q
f
inVars
outVars
->
...
...
This diff is collapsed.
Click to expand it.
coq/ssaPrgs.v
+
2
−
1
View file @
e257e52b
...
...
@@ -2,7 +2,7 @@ Require Import Coq.MSets.MSets Coq.Arith.PeanoNat.
Require
Export
Daisy
.
Commands
.
(
**
Module
for
an
ordered
type
with
leibniz
,
based
on
code
from
coq
-
club
code
Module
for
an
ordered
type
with
leibniz
,
based
on
code
from
coq
-
club
mailing
list
http:
//coq-club.inria.narkive.com/zptqoou2/how-to-use-msets
**
)
Module
OWL
.
...
...
@@ -40,6 +40,7 @@ Fixpoint validVars (V:Type) (f:exp V) Vs :bool :=
|
Binop
o
f1
f2
=>
validVars
V
f1
Vs
&&
validVars
V
f2
Vs
end
.
(
*
TODO
:
This
still
allows
overwriting
of
return
value
*
)
Inductive
ssaPrg
(
V
:
Type
)
:
(
cmd
V
)
->
(
NatSet
.
t
)
->
(
NatSet
.
t
)
->
Prop
:=
ssaLet
x
e
s
inVars
Vterm
:
validVars
V
e
inVars
=
true
->
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment