Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Xiaojie Guo
rtproofs
Commits
6083f8e5
Commit
6083f8e5
authored
Jan 13, 2016
by
Felipe Cerqueira
Browse files
Fix comments in EDF comp
parent
3b2d5852
Changes
1
Hide whitespace changes
Inline
Sidebyside
bertogna_edf_comp.v
View file @
6083f8e5
...
...
@@ 10,7 +10,7 @@ Module ResponseTimeIterationEDF.
ResponseTimeAnalysisEDF
.
(* In this section, we define the algorithm of Bertogna and Cirinei's
responsetime analysis for F
P
scheduling. *)
responsetime analysis for
ED
F scheduling. *)
Section
Analysis
.
Context
{
sporadic_task
:
eqType
}.
...
...
@@ 36,8 +36,8 @@ Module ResponseTimeIterationEDF.
total_interference_bound_edf
task_cost
task_period
task_deadline
tsk
rt_bounds
delta
.
(* ..., which yields the following responsetime bound. *)
Let
response_time_bound
(
rt_bounds
:
seq
task_with_response_time
)
(
tsk
:
sporadic_task
)
(
delta
:
time
)
:
=
Definition
edf_
response_time_bound
(
rt_bounds
:
seq
task_with_response_time
)
(
tsk
:
sporadic_task
)
(
delta
:
time
)
:
=
task_cost
tsk
+
div_floor
(
I
rt_bounds
tsk
delta
)
num_cpus
.
(* Also note that a responsetime is only valid if it is no larger
...
...
@@ 55,7 +55,7 @@ Module ResponseTimeIterationEDF.
Definition
update_bound
(
rt_bounds
:
seq
task_with_response_time
)
(
pair
:
task_with_response_time
)
:
=
let
(
tsk
,
R
)
:
=
pair
in
(
tsk
,
response_time_bound
rt_bounds
tsk
R
).
(
tsk
,
edf_
response_time_bound
rt_bounds
tsk
R
).
(* To compute the responsetime bounds of the entire task set,
We start the iteration with a sequence of tasks and costs:
...
...
@@ 149,7 +149,7 @@ Module ResponseTimeIterationEDF.
rewrite
iterS
in
IN
.
move
:
IN
=>
/
mapP
IN
;
destruct
IN
as
[
x
IN
EQ
].
unfold
update_bound
in
EQ
;
destruct
x
;
inversion
EQ
.
by
unfold
response_time_bound
;
apply
leq_addr
.
by
unfold
edf_
response_time_bound
;
apply
leq_addr
.
}
Qed
.
...
...
@@ 195,7 +195,7 @@ Module ResponseTimeIterationEDF.
set
prev_state
:
=
iter
step
edf_rta_iteration
(
initial_state
ts
).
fold
prev_state
in
IN
,
IHstep
.
specialize
(
IHstep
tsk
IN
)
;
des
.
exists
(
response_time_bound
prev_state
tsk
R
).
exists
(
edf_
response_time_bound
prev_state
tsk
R
).
by
apply
/
mapP
;
exists
(
tsk
,
R
)
;
[
by
done

by
f_equal
].
}
Qed
.
...
...
@@ 253,7 +253,10 @@ Module ResponseTimeIterationEDF.
End
MonotonicityOfInterferenceBound
.
(* In this section, we prove the convergence of the RTA procedure. *)
(* In this section, we prove the convergence of the RTA procedure.
Since we define the RTA procedure as the application of a function
a fixed number of times, this translates into proving that the value
of the iteration at (max_steps ts) is equal to the value at (max_steps ts) + 1. *)
Section
Convergence
.
(* Consider any valid task set. *)
...
...
@@ 408,7 +411,7 @@ Module ResponseTimeIterationEDF.
last
by
rewrite
size_zip
2
!
size_map

SIZE
minnn
in
LTi
.
rewrite
(
nth_map
p0
)
;
last
by
rewrite
size_zip
2
!
size_map
SIZE
minnn
in
LTi
.
unfold
update_bound
,
response_time_bound
;
desf
;
simpl
.
unfold
update_bound
,
edf_
response_time_bound
;
desf
;
simpl
.
rename
s
into
tsk_i
,
s0
into
tsk_i'
,
n
into
R_i
,
n0
into
R_i'
,
Heq
into
EQ
,
Heq0
into
EQ'
.
assert
(
EQtsk
:
tsk_i
=
tsk_i'
).
{
...
...
@@ 567,7 +570,8 @@ Module ResponseTimeIterationEDF.
by
unfold
edf_rta_iteration
.
Qed
.
(* Otherwise, if the iteration converged at an earlier step, then it remains stable. *)
(* Otherwise, if the iteration reached a fixed point before (max_steps ts), then
the value at (max_steps ts) is still at a fixed point. *)
Lemma
bertogna_edf_comp_f_converges_early
:
(
exists
k
,
k
<=
max_steps
ts
/\
f
k
=
f
k
.+
1
)
>
f
(
max_steps
ts
)
=
f
(
max_steps
ts
).+
1
.
...
...
@@ 757,14 +761,13 @@ Module ResponseTimeIterationEDF.
End
DerivingContradiction
.
(* Using the lemmas above, we prove that edf_rta_iteration re
mains stable
(* Using the lemmas above, we prove that edf_rta_iteration re
aches a fixed point
after (max_steps ts) iterations, ... *)
Lemma
edf_claimed_bounds_converges_helper
:
forall
rt_bounds
,
edf_claimed_bounds
ts
=
Some
rt_bounds
>
valid_sporadic_taskset
task_cost
task_period
task_deadline
ts
>
iter
(
max_steps
ts
)
edf_rta_iteration
(
initial_state
ts
)
=
iter
(
max_steps
ts
).+
1
edf_rta_iteration
(
initial_state
ts
).
f
(
max_steps
ts
)
=
f
(
max_steps
ts
).+
1
.
Proof
.
intros
rt_bounds
SOME
VALID
.
unfold
valid_sporadic_taskset
,
is_valid_sporadic_task
in
*.
...
...
@@ 856,6 +859,7 @@ Module ResponseTimeIterationEDF.
have
CONV
:
=
edf_claimed_bounds_converges_helper
rt_bounds
.
unfold
edf_claimed_bounds
in
*
;
desf
.
exploit
(
CONV
)
;
[
by
done

by
done

intro
ITER
;
clear
CONV
].
unfold
f
in
ITER
.
cut
(
update_bound
(
iter
(
max_steps
ts
)
edf_rta_iteration
(
initial_state
ts
))
(
tsk
,
R
)
=
(
tsk
,
R
)).
...
...
@@ 953,7 +957,7 @@ Module ResponseTimeIterationEDF.
job_misses_no_deadline
job_cost
job_deadline
rate
sched
.
(* In the following theorem, we prove that any responsetime bound contained
in f
p
_claimed_bounds is safe. The proof follows by direct application of
in
ed
f_claimed_bounds is safe. The proof follows by direct application of
the main Theorem from bertogna_edf_theory.v. *)
Theorem
edf_analysis_yields_response_time_bounds
:
forall
tsk
R
,
...
...
@@ 979,7 +983,7 @@ Module ResponseTimeIterationEDF.
Hypothesis
H_test_succeeds
:
edf_schedulable
ts
.
(*... no task misses its deadline. *)
Theorem
taskset_schedulable_by_f
p
_rta
:
Theorem
taskset_schedulable_by_
ed
f_rta
:
forall
tsk
,
tsk
\
in
ts
>
no_deadline_missed_by_task
tsk
.
Proof
.
unfold
no_deadline_missed_by_task
,
task_misses_no_deadline
,
...
...
@@ 1021,11 +1025,11 @@ Module ResponseTimeIterationEDF.
(* For completeness, since all jobs of the arrival sequence
are spawned by the task set, we conclude that no job misses
its deadline. *)
Theorem
jobs_schedulable_by_f
p
_rta
:
Theorem
jobs_schedulable_by_
ed
f_rta
:
forall
(
j
:
JobIn
arr_seq
),
no_deadline_missed_by_job
j
.
Proof
.
intros
j
.
have
SCHED
:
=
taskset_schedulable_by_f
p
_rta
.
have
SCHED
:
=
taskset_schedulable_by_
ed
f_rta
.
unfold
no_deadline_missed_by_task
,
task_misses_no_deadline
in
*.
apply
SCHED
with
(
tsk
:
=
job_task
j
)
;
last
by
done
.
by
apply
H_all_jobs_from_taskset
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment