diff --git a/theories/base.v b/theories/base.v index 56dcd6acf81dc711512bce067aa436c81bdcb015..3570aae7cad56e64c37f66c2f1896dc18ec0e21e 100644 --- a/theories/base.v +++ b/theories/base.v @@ -5,18 +5,32 @@ that are used throughout the whole development. Most importantly it contains abstract interfaces for ordered structures, collections, and various other data structures. *) Global Generalizable All Variables. -Global Unset Transparent Obligations. From Coq Require Export Morphisms RelationClasses List Bool Utf8 Setoid. Set Default Proof Using "Type". Export ListNotations. From Coq.Program Require Export Basics Syntax. -(* Tweak program: don't let it automatically simplify obligations and hide -them from the results of the [Search] commands. *) +(** * Tweak program *) +(** 1. Since we only use Program to solve logical side-conditions, they should +always be made Opaque, otherwise we end up with performance problems due to +Coq blindly unfolding them. + +Note that in most cases we use [Next Obligation. (* ... *) Qed.], for which +this option does not matter. However, sometimes we write things like +[Solve Obligations with naive_solver (* ... *)], and then the obligations +should surely be opaque. *) +Global Unset Transparent Obligations. + +(** 2. Do not let Program automatically simplify obligations. The default +obligation tactic is [Tactics.program_simpl], which, among other things, +introduces all variables and gives them fresh names. As such, it becomes +impossible to refer to hypotheses in a robust way. *) Obligation Tactic := idtac. + +(** 3. Hide obligations from the results of the [Search] commands. *) Add Search Blacklist "_obligation_". -(** Sealing off definitions *) +(** * Sealing off definitions *) Section seal. Local Set Primitive Projections. Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }. @@ -24,7 +38,7 @@ End seal. Arguments unseal {_ _} _ : assert. Arguments seal_eq {_ _} _ : assert. -(** Typeclass opaque definitions *) +(** * Typeclass opaque definitions *) (* The constant [tc_opaque] is used to make definitions opaque for just type class search. Note that [simpl] is set up to always unfold [tc_opaque]. *) Definition tc_opaque {A} (x : A) : A := x. @@ -865,23 +879,26 @@ Notation "(≫= f )" := (mbind f) (only parsing) : C_scope. Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope. Notation "x ↠y ; z" := (y ≫= (λ x : _, z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, only parsing, right associativity) : C_scope. + Infix "<$>" := fmap (at level 60, right associativity) : C_scope. Notation "' ( x1 , x2 ) ↠y ; z" := (y ≫= (λ x : _, let ' (x1, x2) := x in z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, z at level 200, only parsing, right associativity) : C_scope. Notation "' ( x1 , x2 , x3 ) ↠y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3) := x in z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, z at level 200, only parsing, right associativity) : C_scope. Notation "' ( x1 , x2 , x3 , x4 ) ↠y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4) := x in z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, z at level 200, only parsing, right associativity) : C_scope. Notation "' ( x1 , x2 , x3 , x4 , x5 ) ↠y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, z at level 200, only parsing, right associativity) : C_scope. Notation "' ( x1 , x2 , x3 , x4 , x5 , x6 ) ↠y ; z" := (y ≫= (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z)) - (at level 65, only parsing, right associativity) : C_scope. + (at level 100, z at level 200, only parsing, right associativity) : C_scope. +Notation "x ;; z" := (x ≫= λ _, z) + (at level 100, z at level 200, only parsing, right associativity): C_scope. Notation "ps .*1" := (fmap (M:=list) fst ps) (at level 10, format "ps .*1"). @@ -891,11 +908,10 @@ Notation "ps .*2" := (fmap (M:=list) snd ps) Class MGuard (M : Type → Type) := mguard: ∀ P {dec : Decision P} {A}, (P → M A) → M A. Arguments mguard _ _ _ !_ _ _ / : assert. -Notation "'guard' P ; o" := (mguard P (λ _, o)) - (at level 65, only parsing, right associativity) : C_scope. -Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o)) - (at level 65, only parsing, right associativity) : C_scope. - +Notation "'guard' P ; z" := (mguard P (λ _, z)) + (at level 100, z at level 200, only parsing, right associativity) : C_scope. +Notation "'guard' P 'as' H ; z" := (mguard P (λ H, z)) + (at level 100, z at level 200, only parsing, right associativity) : C_scope. (** * Operations on maps *) (** In this section we define operational type classes for the operations diff --git a/theories/collections.v b/theories/collections.v index 00522a5cd3be4e1bdb9f97e28edd344b04908e3b..5ec1412ea84aa829c4670de9932db164981d0712 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -797,7 +797,7 @@ Global Instance collection_guard `{CollectionMonad M} : MGuard M := Section collection_monad_base. Context `{CollectionMonad M}. Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) : - x ∈ guard P; X ↔ P ∧ x ∈ X. + (x ∈ guard P; X) ↔ P ∧ x ∈ X. Proof. unfold mguard, collection_guard; simpl; case_match; rewrite ?elem_of_empty; naive_solver. @@ -805,7 +805,7 @@ Section collection_monad_base. Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) : P → x ∈ X → x ∈ guard P; X. Proof. by rewrite elem_of_guard. Qed. - Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X ≡ ∅ ↔ ¬P ∨ X ≡ ∅. + Lemma guard_empty `{Decision P} {A} (X : M A) : (guard P; X) ≡ ∅ ↔ ¬P ∨ X ≡ ∅. Proof. rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard. destruct (decide P); naive_solver. @@ -945,7 +945,7 @@ Section collection_monad. Lemma collection_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x. Proof. set_solver. Qed. - Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → guard P; X ≡ X. + Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → (guard P; X) ≡ X. Proof. set_solver. Qed. Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) (X : M A) : g ∘ f <$> X ≡ g <$> (f <$> X). diff --git a/theories/fin_maps.v b/theories/fin_maps.v index 9db4afcb072ec8f06ca0db6f51b0309b0c513bc2..903c17672abb351a30fd7ac467de6f3d11faab3f 100644 --- a/theories/fin_maps.v +++ b/theories/fin_maps.v @@ -1212,7 +1212,7 @@ End more_merge. (** Properties of the zip_with function *) Lemma map_lookup_zip_with {A B C} (f : A → B → C) (m1 : M A) (m2 : M B) i : - map_zip_with f m1 m2 !! i = x ↠m1 !! i; y ↠m2 !! i; Some (f x y). + map_zip_with f m1 m2 !! i = (x ↠m1 !! i; y ↠m2 !! i; Some (f x y)). Proof. unfold map_zip_with. rewrite lookup_merge by done. by destruct (m1 !! i), (m2 !! i). diff --git a/theories/finite.v b/theories/finite.v index ab14c0e092bd3098f9486593d00a2fe459fe80b2..a44bfe75385a3f9a890f4b57d4ba8cbdccd08975 100644 --- a/theories/finite.v +++ b/theories/finite.v @@ -72,7 +72,7 @@ Definition encode_fin `{Finite A} (x : A) : fin (card A) := Fin.of_nat_lt (encode_lt_card x). Program Definition decode_fin `{Finite A} (i : fin (card A)) : A := match Some_dec (decode_nat i) return _ with - | inleft (exist _ x _) => x | inright _ => _ + | inleft (x ↾ _) => x | inright _ => _ end. Next Obligation. intros A ?? i ?; exfalso. diff --git a/theories/hlist.v b/theories/hlist.v index ae4f934180b429c4ebf93f06a92a3da2ed36ad5f..046a419d7eeeedd814f8298d50eb3e0b2a64d5ec 100644 --- a/theories/hlist.v +++ b/theories/hlist.v @@ -40,10 +40,10 @@ Definition hlam {A As B} (f : A → himpl As B) : himpl (tcons A As) B := f. Arguments hlam _ _ _ _ _ / : assert. Definition hcurry {As B} (f : himpl As B) (xs : hlist As) : B := - (fix go As xs := + (fix go {As} xs := match xs in hlist As return himpl As B → B with | hnil => λ f, f - | @hcons A As x xs => λ f, go As xs (f x) + | hcons x xs => λ f, go xs (f x) end) _ xs f. Coercion hcurry : himpl >-> Funclass. diff --git a/theories/list.v b/theories/list.v index be077eea5bd39d11782b3e49fd99304ad07510b2..c2cbd8bc9236b217005a3d6c1b588cd43be4a1f4 100644 --- a/theories/list.v +++ b/theories/list.v @@ -3394,7 +3394,7 @@ Section zip_with. Forall2 P l k → length (zip_with f l k) = length k. Proof. induction 1; simpl; auto. Qed. Lemma lookup_zip_with l k i : - zip_with f l k !! i = x ↠l !! i; y ↠k !! i; Some (f x y). + zip_with f l k !! i = (x ↠l !! i; y ↠k !! i; Some (f x y)). Proof. revert k i. induction l; intros [|??] [|?]; f_equal/=; auto. by destruct (_ !! _). diff --git a/theories/option.v b/theories/option.v index d50cc7ea0ef185e6e46868c3432186733375665f..f149f442e145c91704392cd27d6fb9500b3d4bdb 100644 --- a/theories/option.v +++ b/theories/option.v @@ -336,13 +336,13 @@ Tactic Notation "case_option_guard" := let H := fresh in case_option_guard as H. Lemma option_guard_True {A} P `{Decision P} (mx : option A) : - P → guard P; mx = mx. + P → (guard P; mx) = mx. Proof. intros. by case_option_guard. Qed. Lemma option_guard_False {A} P `{Decision P} (mx : option A) : - ¬P → guard P; mx = None. + ¬P → (guard P; mx) = None. Proof. intros. by case_option_guard. Qed. Lemma option_guard_iff {A} P Q `{Decision P, Decision Q} (mx : option A) : - (P ↔ Q) → guard P; mx = guard Q; mx. + (P ↔ Q) → (guard P; mx) = guard Q; mx. Proof. intros [??]. repeat case_option_guard; intuition. Qed. Tactic Notation "simpl_option" "by" tactic3(tac) :=