From 56af224a44aecaea36a95415f96b95e52002e56d Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 9 Aug 2022 22:52:33 +0200 Subject: [PATCH] Same for `Qp`. --- stdpp/countable.v | 2 +- stdpp/numbers.v | 943 +++++++++++++++++++++++----------------------- 2 files changed, 476 insertions(+), 469 deletions(-) diff --git a/stdpp/countable.v b/stdpp/countable.v index ad12a3da..7ced6edb 100644 --- a/stdpp/countable.v +++ b/stdpp/countable.v @@ -298,7 +298,7 @@ Global Program Instance Qp_countable : Countable Qp := (λ p : Qc, guard (0 < p)%Qc as Hp; Some (mk_Qp p Hp)) _. Next Obligation. intros [p Hp]. unfold mguard, option_guard; simpl. - case_match; [|done]. f_equal. by apply Qp_to_Qc_inj_iff. + case_match; [|done]. f_equal. by apply Qp.to_Qc_inj_iff. Qed. Global Program Instance fin_countable n : Countable (fin n) := diff --git a/stdpp/numbers.v b/stdpp/numbers.v index ece1e09f..47207002 100644 --- a/stdpp/numbers.v +++ b/stdpp/numbers.v @@ -791,507 +791,514 @@ Add Printing Constructor Qp. Bind Scope Qp_scope with Qp. Global Arguments Qp_to_Qc _%Qp : assert. -Local Open Scope Qp_scope. - -Lemma Qp_to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q ↔ p = q. -Proof. - split; [|by intros ->]. - destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _). -Qed. -Global Instance Qp_eq_dec : EqDecision Qp. -Proof. - refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q))); - by rewrite <-Qp_to_Qc_inj_iff. -Defined. - -Definition Qp_add (p q : Qp) : Qp := - let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in - mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq). -Global Arguments Qp_add : simpl never. - -Definition Qp_sub (p q : Qp) : option Qp := - let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in - let pq := (p - q)%Qc in - guard (0 < pq)%Qc as Hpq; Some (mk_Qp pq Hpq). -Global Arguments Qp_sub : simpl never. - -Definition Qp_mul (p q : Qp) : Qp := - let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in - mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq). -Global Arguments Qp_mul : simpl never. - -Definition Qp_inv (q : Qp) : Qp := - let 'mk_Qp q Hq := q return _ in - mk_Qp (/ q)%Qc (Qcinv_pos _ Hq). -Global Arguments Qp_inv : simpl never. - -Definition Qp_div (p q : Qp) : Qp := Qp_mul p (Qp_inv q). -Typeclasses Opaque Qp_div. -Global Arguments Qp_div : simpl never. - -Infix "+" := Qp_add : Qp_scope. -Infix "-" := Qp_sub : Qp_scope. -Infix "*" := Qp_mul : Qp_scope. -Notation "/ q" := (Qp_inv q) : Qp_scope. -Infix "/" := Qp_div : Qp_scope. - -Lemma Qp_to_Qc_inj_add p q : (Qp_to_Qc (p + q) = Qp_to_Qc p + Qp_to_Qc q)%Qc. -Proof. by destruct p, q. Qed. -Lemma Qp_to_Qc_inj_mul p q : (Qp_to_Qc (p * q) = Qp_to_Qc p * Qp_to_Qc q)%Qc. -Proof. by destruct p, q. Qed. - Program Definition pos_to_Qp (n : positive) : Qp := mk_Qp (Qc_of_Z $ Z.pos n) _. Next Obligation. intros n. by rewrite <-Z2Qc_inj_0, <-Z2Qc_inj_lt. Qed. Global Arguments pos_to_Qp : simpl never. -Notation "1" := (pos_to_Qp 1) : Qp_scope. -Notation "2" := (pos_to_Qp 2) : Qp_scope. -Notation "3" := (pos_to_Qp 3) : Qp_scope. -Notation "4" := (pos_to_Qp 4) : Qp_scope. - -Definition Qp_le (p q : Qp) : Prop := - let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p ≤ q)%Qc. -Definition Qp_lt (p q : Qp) : Prop := - let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc. - -Infix "≤" := Qp_le : Qp_scope. -Infix "<" := Qp_lt : Qp_scope. -Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope. -Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope. -Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope. -Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope. -Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope. -Notation "(≤)" := Qp_le (only parsing) : Qp_scope. -Notation "(<)" := Qp_lt (only parsing) : Qp_scope. - -Global Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core. - -Lemma Qp_to_Qc_inj_le p q : p ≤ q ↔ (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc. -Proof. by destruct p, q. Qed. -Lemma Qp_to_Qc_inj_lt p q : p < q ↔ (Qp_to_Qc p < Qp_to_Qc q)%Qc. -Proof. by destruct p, q. Qed. - -Global Instance Qp_le_dec : RelDecision (≤). -Proof. - refine (λ p q, cast_if (decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc)); - by rewrite Qp_to_Qc_inj_le. -Qed. -Global Instance Qp_lt_dec : RelDecision (<). -Proof. - refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc)); - by rewrite Qp_to_Qc_inj_lt. -Qed. -Global Instance Qp_lt_pi p q : ProofIrrel (p < q). -Proof. destruct p, q; apply _. Qed. - -Definition Qp_max (q p : Qp) : Qp := if decide (q ≤ p) then p else q. -Definition Qp_min (q p : Qp) : Qp := if decide (q ≤ p) then q else p. - -Infix "`max`" := Qp_max : Qp_scope. -Infix "`min`" := Qp_min : Qp_scope. - -Global Instance Qp_inhabited : Inhabited Qp := populate 1. +Local Open Scope Qp_scope. -Global Instance Qp_add_assoc : Assoc (=) Qp_add. -Proof. intros [p ?] [q ?] [r ?]; apply Qp_to_Qc_inj_iff, Qcplus_assoc. Qed. -Global Instance Qp_add_comm : Comm (=) Qp_add. -Proof. intros [p ?] [q ?]; apply Qp_to_Qc_inj_iff, Qcplus_comm. Qed. -Global Instance Qp_add_inj_r p : Inj (=) (=) (Qp_add p). -Proof. - destruct p as [p ?]. - intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. apply (inj (Qcplus p)). -Qed. -Global Instance Qp_add_inj_l p : Inj (=) (=) (λ q, q + p). -Proof. - destruct p as [p ?]. - intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc). -Qed. +Module Qp. + Lemma to_Qc_inj_iff p q : Qp_to_Qc p = Qp_to_Qc q ↔ p = q. + Proof. + split; [|by intros ->]. + destruct p, q; intros; simplify_eq/=; f_equal; apply (proof_irrel _). + Qed. + Global Instance eq_dec : EqDecision Qp. + Proof. + refine (λ p q, cast_if (decide (Qp_to_Qc p = Qp_to_Qc q))); + by rewrite <-to_Qc_inj_iff. + Defined. -Global Instance Qp_mul_assoc : Assoc (=) Qp_mul. -Proof. intros [p ?] [q ?] [r ?]. apply Qp_to_Qc_inj_iff, Qcmult_assoc. Qed. -Global Instance Qp_mul_comm : Comm (=) Qp_mul. -Proof. intros [p ?] [q ?]; apply Qp_to_Qc_inj_iff, Qcmult_comm. Qed. -Global Instance Qp_mul_inj_r p : Inj (=) (=) (Qp_mul p). -Proof. - destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp_to_Qc_inj_iff; simpl. - intros Hpq. - apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq. -Qed. -Global Instance Qp_mul_inj_l p : Inj (=) (=) (λ q, q * p). -Proof. - intros q1 q2 Hpq. apply (inj (Qp_mul p)). by rewrite !(comm_L Qp_mul p). -Qed. + Definition add (p q : Qp) : Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + mk_Qp (p + q) (Qcplus_pos_pos _ _ Hp Hq). + Global Arguments add : simpl never. + + Definition sub (p q : Qp) : option Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + let pq := (p - q)%Qc in + guard (0 < pq)%Qc as Hpq; Some (mk_Qp pq Hpq). + Global Arguments sub : simpl never. + + Definition mul (p q : Qp) : Qp := + let 'mk_Qp p Hp := p in let 'mk_Qp q Hq := q in + mk_Qp (p * q) (Qcmult_pos_pos _ _ Hp Hq). + Global Arguments mul : simpl never. + + Definition inv (q : Qp) : Qp := + let 'mk_Qp q Hq := q return _ in + mk_Qp (/ q)%Qc (Qcinv_pos _ Hq). + Global Arguments inv : simpl never. + + Definition div (p q : Qp) : Qp := mul p (inv q). + Typeclasses Opaque div. + Global Arguments div : simpl never. + + Definition le (p q : Qp) : Prop := + let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p ≤ q)%Qc. + Definition lt (p q : Qp) : Prop := + let 'mk_Qp p _ := p in let 'mk_Qp q _ := q in (p < q)%Qc. + + Lemma to_Qc_inj_add p q : Qp_to_Qc (add p q) = (Qp_to_Qc p + Qp_to_Qc q)%Qc. + Proof. by destruct p, q. Qed. + Lemma to_Qc_inj_mul p q : Qp_to_Qc (mul p q) = (Qp_to_Qc p * Qp_to_Qc q)%Qc. + Proof. by destruct p, q. Qed. + Lemma to_Qc_inj_le p q : le p q ↔ (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc. + Proof. by destruct p, q. Qed. + Lemma to_Qc_inj_lt p q : lt p q ↔ (Qp_to_Qc p < Qp_to_Qc q)%Qc. + Proof. by destruct p, q. Qed. + + Global Instance le_dec : RelDecision le. + Proof. + refine (λ p q, cast_if (decide (Qp_to_Qc p ≤ Qp_to_Qc q)%Qc)); + by rewrite to_Qc_inj_le. + Qed. + Global Instance lt_dec : RelDecision lt. + Proof. + refine (λ p q, cast_if (decide (Qp_to_Qc p < Qp_to_Qc q)%Qc)); + by rewrite to_Qc_inj_lt. + Qed. + Global Instance lt_pi p q : ProofIrrel (lt p q). + Proof. destruct p, q; apply _. Qed. + + Definition max (q p : Qp) : Qp := if decide (le q p) then p else q. + Definition min (q p : Qp) : Qp := if decide (le q p) then q else p. + + Module Import notations. + Infix "+" := add : Qp_scope. + Infix "-" := sub : Qp_scope. + Infix "*" := mul : Qp_scope. + Notation "/ q" := (inv q) : Qp_scope. + Infix "/" := div : Qp_scope. + + Notation "1" := (pos_to_Qp 1) : Qp_scope. + Notation "2" := (pos_to_Qp 2) : Qp_scope. + Notation "3" := (pos_to_Qp 3) : Qp_scope. + Notation "4" := (pos_to_Qp 4) : Qp_scope. + + Infix "≤" := le : Qp_scope. + Infix "<" := lt : Qp_scope. + Notation "p ≤ q ≤ r" := (p ≤ q ∧ q ≤ r) : Qp_scope. + Notation "p ≤ q < r" := (p ≤ q ∧ q < r) : Qp_scope. + Notation "p < q < r" := (p < q ∧ q < r) : Qp_scope. + Notation "p < q ≤ r" := (p < q ∧ q ≤ r) : Qp_scope. + Notation "p ≤ q ≤ r ≤ r'" := (p ≤ q ∧ q ≤ r ∧ r ≤ r') : Qp_scope. + Notation "(≤)" := le (only parsing) : Qp_scope. + Notation "(<)" := lt (only parsing) : Qp_scope. + + Infix "`max`" := max : Qp_scope. + Infix "`min`" := min : Qp_scope. + End notations. + + Global Hint Extern 0 (_ ≤ _)%Qp => reflexivity : core. + + Global Instance inhabited : Inhabited Qp := populate 1. + + Global Instance add_assoc : Assoc (=) add. + Proof. intros [p ?] [q ?] [r ?]; apply to_Qc_inj_iff, Qcplus_assoc. Qed. + Global Instance add_comm : Comm (=) add. + Proof. intros [p ?] [q ?]; apply to_Qc_inj_iff, Qcplus_comm. Qed. + Global Instance add_inj_r p : Inj (=) (=) (add p). + Proof. + destruct p as [p ?]. + intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (Qcplus p)). + Qed. + Global Instance add_inj_l p : Inj (=) (=) (λ q, q + p). + Proof. + destruct p as [p ?]. + intros [q1 ?] [q2 ?]. rewrite <-!to_Qc_inj_iff; simpl. apply (inj (λ q, q + p)%Qc). + Qed. -Lemma Qp_mul_add_distr_l p q r : p * (q + r) = p * q + p * r. -Proof. destruct p, q, r; by apply Qp_to_Qc_inj_iff, Qcmult_plus_distr_r. Qed. -Lemma Qp_mul_add_distr_r p q r : (p + q) * r = p * r + q * r. -Proof. destruct p, q, r; by apply Qp_to_Qc_inj_iff, Qcmult_plus_distr_l. Qed. -Lemma Qp_mul_1_l p : 1 * p = p. -Proof. destruct p; apply Qp_to_Qc_inj_iff, Qcmult_1_l. Qed. -Lemma Qp_mul_1_r p : p * 1 = p. -Proof. destruct p; apply Qp_to_Qc_inj_iff, Qcmult_1_r. Qed. + Global Instance mul_assoc : Assoc (=) mul. + Proof. intros [p ?] [q ?] [r ?]. apply Qp.to_Qc_inj_iff, Qcmult_assoc. Qed. + Global Instance mul_comm : Comm (=) mul. + Proof. intros [p ?] [q ?]; apply Qp.to_Qc_inj_iff, Qcmult_comm. Qed. + Global Instance mul_inj_r p : Inj (=) (=) (mul p). + Proof. + destruct p as [p ?]. intros [q1 ?] [q2 ?]. rewrite <-!Qp.to_Qc_inj_iff; simpl. + intros Hpq. + apply (anti_symm Qcle); apply (Qcmult_le_mono_pos_l _ _ p); by rewrite ?Hpq. + Qed. + Global Instance mul_inj_l p : Inj (=) (=) (λ q, q * p). + Proof. + intros q1 q2 Hpq. apply (inj (mul p)). by rewrite !(comm_L mul p). + Qed. -Lemma Qp_1_1 : 1 + 1 = 2. -Proof. compute_done. Qed. -Lemma Qp_add_diag p : p + p = 2 * p. -Proof. by rewrite <-Qp_1_1, Qp_mul_add_distr_r, !Qp_mul_1_l. Qed. + Lemma mul_add_distr_l p q r : p * (q + r) = p * q + p * r. + Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_r. Qed. + Lemma mul_add_distr_r p q r : (p + q) * r = p * r + q * r. + Proof. destruct p, q, r; by apply Qp.to_Qc_inj_iff, Qcmult_plus_distr_l. Qed. + Lemma mul_1_l p : 1 * p = p. + Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_l. Qed. + Lemma mul_1_r p : p * 1 = p. + Proof. destruct p; apply Qp.to_Qc_inj_iff, Qcmult_1_r. Qed. + + Lemma add_1_1 : 1 + 1 = 2. + Proof. compute_done. Qed. + Lemma add_diag p : p + p = 2 * p. + Proof. by rewrite <-add_1_1, mul_add_distr_r, !mul_1_l. Qed. + + Lemma mul_inv_l p : /p * p = 1. + Proof. + destruct p as [p ?]; apply Qp.to_Qc_inj_iff; simpl. + by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq). + Qed. + Lemma mul_inv_r p : p * /p = 1. + Proof. by rewrite (comm_L mul), mul_inv_l. Qed. + Lemma inv_mul_distr p q : /(p * q) = /p * /q. + Proof. + apply (inj (mul (p * q))). + rewrite mul_inv_r, (comm_L mul p), <-(assoc_L _), (assoc_L mul p). + by rewrite mul_inv_r, mul_1_l, mul_inv_r. + Qed. + Lemma inv_involutive p : / /p = p. + Proof. + rewrite <-(mul_1_l (/ /p)), <-(mul_inv_r p), <-(assoc_L _). + by rewrite mul_inv_r, mul_1_r. + Qed. + Global Instance inv_inj : Inj (=) (=) inv. + Proof. + intros p1 p2 Hp. apply (inj (mul (/p1))). + by rewrite mul_inv_l, Hp, mul_inv_l. + Qed. + Lemma inv_1 : /1 = 1. + Proof. compute_done. Qed. + Lemma inv_half_half : /2 + /2 = 1. + Proof. compute_done. Qed. + Lemma inv_quarter_quarter : /4 + /4 = /2. + Proof. compute_done. Qed. + + Lemma div_diag p : p / p = 1. + Proof. apply mul_inv_r. Qed. + Lemma mul_div_l p q : (p / q) * q = p. + Proof. unfold div. by rewrite <-(assoc_L _), mul_inv_l, mul_1_r. Qed. + Lemma mul_div_r p q : q * (p / q) = p. + Proof. by rewrite (comm_L mul q), mul_div_l. Qed. + Lemma div_add_distr p q r : (p + q) / r = p / r + q / r. + Proof. apply mul_add_distr_r. Qed. + Lemma div_div p q r : (p / q) / r = p / (q * r). + Proof. unfold div. by rewrite inv_mul_distr, (assoc_L _). Qed. + Lemma div_mul_cancel_l p q r : (r * p) / (r * q) = p / q. + Proof. + rewrite <-div_div. f_equiv. unfold div. + by rewrite (comm_L mul r), <-(assoc_L _), mul_inv_r, mul_1_r. + Qed. + Lemma div_mul_cancel_r p q r : (p * r) / (q * r) = p / q. + Proof. by rewrite <-!(comm_L mul r), div_mul_cancel_l. Qed. + Lemma div_1 p : p / 1 = p. + Proof. by rewrite <-(mul_1_r (p / 1)), mul_div_l. Qed. + Lemma div_2 p : p / 2 + p / 2 = p. + Proof. + rewrite <-div_add_distr, add_diag. + rewrite <-(mul_1_r 2) at 2. by rewrite div_mul_cancel_l, div_1. + Qed. + Lemma div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q. + Proof. by rewrite <-div_add_distr, add_diag, div_mul_cancel_l. Qed. + + Lemma half_half : 1 / 2 + 1 / 2 = 1. + Proof. compute_done. Qed. + Lemma quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2. + Proof. compute_done. Qed. + Lemma quarter_three_quarter : 1 / 4 + 3 / 4 = 1. + Proof. compute_done. Qed. + Lemma three_quarter_quarter : 3 / 4 + 1 / 4 = 1. + Proof. compute_done. Qed. + + Global Instance div_inj_r p : Inj (=) (=) (div p). + Proof. unfold div; apply _. Qed. + Global Instance div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp. + Proof. unfold div; apply _. Qed. -Lemma Qp_mul_inv_l p : /p * p = 1. -Proof. - destruct p as [p ?]; apply Qp_to_Qc_inj_iff; simpl. - by rewrite Qcmult_inv_l, Z2Qc_inj_1 by (by apply not_symmetry, Qclt_not_eq). -Qed. -Lemma Qp_mul_inv_r p : p * /p = 1. -Proof. by rewrite (comm_L Qp_mul), Qp_mul_inv_l. Qed. -Lemma Qp_inv_mul_distr p q : /(p * q) = /p * /q. -Proof. - apply (inj (Qp_mul (p * q))). - rewrite Qp_mul_inv_r, (comm_L Qp_mul p), <-(assoc_L _), (assoc_L Qp_mul p). - by rewrite Qp_mul_inv_r, Qp_mul_1_l, Qp_mul_inv_r. -Qed. -Lemma Qp_inv_involutive p : / /p = p. -Proof. - rewrite <-(Qp_mul_1_l (/ /p)), <-(Qp_mul_inv_r p), <-(assoc_L _). - by rewrite Qp_mul_inv_r, Qp_mul_1_r. -Qed. -Global Instance Qp_inv_inj : Inj (=) (=) Qp_inv. -Proof. - intros p1 p2 Hp. apply (inj (Qp_mul (/p1))). - by rewrite Qp_mul_inv_l, Hp, Qp_mul_inv_l. -Qed. -Lemma Qp_inv_1 : /1 = 1. -Proof. compute_done. Qed. -Lemma Qp_inv_half_half : /2 + /2 = 1. -Proof. compute_done. Qed. -Lemma Qp_inv_quarter_quarter : /4 + /4 = /2. -Proof. compute_done. Qed. + Global Instance le_po : PartialOrder (≤). + Proof. + split; [split|]. + - intros p. by apply to_Qc_inj_le. + - intros p q r. rewrite !to_Qc_inj_le. by etrans. + - intros p q. rewrite !to_Qc_inj_le, <-to_Qc_inj_iff. apply Qcle_antisym. + Qed. + Global Instance lt_strict : StrictOrder (<). + Proof. + split. + - intros p ?%to_Qc_inj_lt. by apply (irreflexivity (<)%Qc (Qp_to_Qc p)). + - intros p q r. rewrite !to_Qc_inj_lt. by etrans. + Qed. + Global Instance le_total: Total (≤). + Proof. intros p q. rewrite !to_Qc_inj_le. apply (total Qcle). Qed. -Lemma Qp_div_diag p : p / p = 1. -Proof. apply Qp_mul_inv_r. Qed. -Lemma Qp_mul_div_l p q : (p / q) * q = p. -Proof. unfold Qp_div. by rewrite <-(assoc_L _), Qp_mul_inv_l, Qp_mul_1_r. Qed. -Lemma Qp_mul_div_r p q : q * (p / q) = p. -Proof. by rewrite (comm_L Qp_mul q), Qp_mul_div_l. Qed. -Lemma Qp_div_add_distr p q r : (p + q) / r = p / r + q / r. -Proof. apply Qp_mul_add_distr_r. Qed. -Lemma Qp_div_div p q r : (p / q) / r = p / (q * r). -Proof. unfold Qp_div. by rewrite Qp_inv_mul_distr, (assoc_L _). Qed. -Lemma Qp_div_mul_cancel_l p q r : (r * p) / (r * q) = p / q. -Proof. - rewrite <-Qp_div_div. f_equiv. unfold Qp_div. - by rewrite (comm_L Qp_mul r), <-(assoc_L _), Qp_mul_inv_r, Qp_mul_1_r. -Qed. -Lemma Qp_div_mul_cancel_r p q r : (p * r) / (q * r) = p / q. -Proof. by rewrite <-!(comm_L Qp_mul r), Qp_div_mul_cancel_l. Qed. -Lemma Qp_div_1 p : p / 1 = p. -Proof. by rewrite <-(Qp_mul_1_r (p / 1)), Qp_mul_div_l. Qed. -Lemma Qp_div_2 p : p / 2 + p / 2 = p. -Proof. - rewrite <-Qp_div_add_distr, Qp_add_diag. - rewrite <-(Qp_mul_1_r 2) at 2. by rewrite Qp_div_mul_cancel_l, Qp_div_1. -Qed. -Lemma Qp_div_2_mul p q : p / (2 * q) + p / (2 * q) = p / q. -Proof. by rewrite <-Qp_div_add_distr, Qp_add_diag, Qp_div_mul_cancel_l. Qed. -Lemma Qp_half_half : 1 / 2 + 1 / 2 = 1. -Proof. compute_done. Qed. -Lemma Qp_quarter_quarter : 1 / 4 + 1 / 4 = 1 / 2. -Proof. compute_done. Qed. -Lemma Qp_quarter_three_quarter : 1 / 4 + 3 / 4 = 1. -Proof. compute_done. Qed. -Lemma Qp_three_quarter_quarter : 3 / 4 + 1 / 4 = 1. -Proof. compute_done. Qed. -Global Instance Qp_div_inj_r p : Inj (=) (=) (Qp_div p). -Proof. unfold Qp_div; apply _. Qed. -Global Instance Qp_div_inj_l p : Inj (=) (=) (λ q, q / p)%Qp. -Proof. unfold Qp_div; apply _. Qed. + Lemma lt_le_incl p q : p < q → p ≤ q. + Proof. rewrite to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_weak. Qed. + Lemma le_lteq p q : p ≤ q ↔ p < q ∨ p = q. + Proof. + rewrite to_Qc_inj_lt, to_Qc_inj_le, <-Qp.to_Qc_inj_iff. split. + - intros [?| ->]%Qcle_lt_or_eq; auto. + - intros [?| ->]; auto using Qclt_le_weak. + Qed. + Lemma lt_ge_cases p q : {p < q} + {q ≤ p}. + Proof. + refine (cast_if (Qclt_le_dec (Qp_to_Qc p) (Qp_to_Qc q)%Qc)); + [by apply to_Qc_inj_lt|by apply to_Qc_inj_le]. + Defined. + Lemma le_lt_trans p q r : p ≤ q → q < r → p < r. + Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qcle_lt_trans. Qed. + Lemma lt_le_trans p q r : p < q → q ≤ r → p < r. + Proof. rewrite !to_Qc_inj_lt, to_Qc_inj_le. apply Qclt_le_trans. Qed. -Global Instance Qp_le_po : PartialOrder (≤)%Qp. -Proof. - split; [split|]. - - intros p. by apply Qp_to_Qc_inj_le. - - intros p q r. rewrite !Qp_to_Qc_inj_le. by etrans. - - intros p q. rewrite !Qp_to_Qc_inj_le, <-Qp_to_Qc_inj_iff. apply Qcle_antisym. -Qed. -Global Instance Qp_lt_strict : StrictOrder (<)%Qp. -Proof. - split. - - intros p ?%Qp_to_Qc_inj_lt. by apply (irreflexivity (<)%Qc (Qp_to_Qc p)). - - intros p q r. rewrite !Qp_to_Qc_inj_lt. by etrans. -Qed. -Global Instance Qp_le_total: Total (≤)%Qp. -Proof. intros p q. rewrite !Qp_to_Qc_inj_le. apply (total Qcle). Qed. + Lemma le_ngt p q : p ≤ q ↔ ¬q < p. + Proof. + rewrite !to_Qc_inj_lt, to_Qc_inj_le. + split; auto using Qcle_not_lt, Qcnot_lt_le. + Qed. + Lemma lt_nge p q : p < q ↔ ¬q ≤ p. + Proof. + rewrite !to_Qc_inj_lt, to_Qc_inj_le. + split; auto using Qclt_not_le, Qcnot_le_lt. + Qed. -Lemma Qp_lt_le_incl p q : p < q → p ≤ q. -Proof. rewrite Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le. apply Qclt_le_weak. Qed. -Lemma Qp_le_lteq p q : p ≤ q ↔ p < q ∨ p = q. -Proof. - rewrite Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le, <-Qp_to_Qc_inj_iff. split. - - intros [?| ->]%Qcle_lt_or_eq; auto. - - intros [?| ->]; auto using Qclt_le_weak. -Qed. -Lemma Qp_lt_ge_cases p q : {p < q} + {q ≤ p}. -Proof. - refine (cast_if (Qclt_le_dec (Qp_to_Qc p) (Qp_to_Qc q)%Qc)); - [by apply Qp_to_Qc_inj_lt|by apply Qp_to_Qc_inj_le]. -Defined. -Lemma Qp_le_lt_trans p q r : p ≤ q → q < r → p < r. -Proof. rewrite !Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le. apply Qcle_lt_trans. Qed. -Lemma Qp_lt_le_trans p q r : p < q → q ≤ r → p < r. -Proof. rewrite !Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le. apply Qclt_le_trans. Qed. - -Lemma Qp_le_ngt p q : p ≤ q ↔ ¬q < p. -Proof. - rewrite !Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le. - split; auto using Qcle_not_lt, Qcnot_lt_le. -Qed. -Lemma Qp_lt_nge p q : p < q ↔ ¬q ≤ p. -Proof. - rewrite !Qp_to_Qc_inj_lt, Qp_to_Qc_inj_le. - split; auto using Qclt_not_le, Qcnot_le_lt. -Qed. + Lemma add_le_mono_l p q r : p ≤ q ↔ r + p ≤ r + q. + Proof. rewrite !to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed. + Lemma add_le_mono_r p q r : p ≤ q ↔ p + r ≤ q + r. + Proof. rewrite !(comm_L add _ r). apply add_le_mono_l. Qed. + Lemma add_le_mono q p n m : q ≤ n → p ≤ m → q + p ≤ n + m. + Proof. intros. etrans; [by apply add_le_mono_l|by apply add_le_mono_r]. Qed. + + Lemma add_lt_mono_l p q r : p < q ↔ r + p < r + q. + Proof. by rewrite !lt_nge, <-add_le_mono_l. Qed. + Lemma add_lt_mono_r p q r : p < q ↔ p + r < q + r. + Proof. by rewrite !lt_nge, <-add_le_mono_r. Qed. + Lemma add_lt_mono q p n m : q < n → p < m → q + p < n + m. + Proof. intros. etrans; [by apply add_lt_mono_l|by apply add_lt_mono_r]. Qed. + + Lemma mul_le_mono_l p q r : p ≤ q ↔ r * p ≤ r * q. + Proof. + rewrite !to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l. + Qed. + Lemma mul_le_mono_r p q r : p ≤ q ↔ p * r ≤ q * r. + Proof. rewrite !(comm_L mul _ r). apply mul_le_mono_l. Qed. + Lemma mul_le_mono q p n m : q ≤ n → p ≤ m → q * p ≤ n * m. + Proof. intros. etrans; [by apply mul_le_mono_l|by apply mul_le_mono_r]. Qed. -Lemma Qp_add_le_mono_l p q r : p ≤ q ↔ r + p ≤ r + q. -Proof. rewrite !Qp_to_Qc_inj_le. destruct p, q, r; apply Qcplus_le_mono_l. Qed. -Lemma Qp_add_le_mono_r p q r : p ≤ q ↔ p + r ≤ q + r. -Proof. rewrite !(comm_L Qp_add _ r). apply Qp_add_le_mono_l. Qed. -Lemma Qp_add_le_mono q p n m : q ≤ n → p ≤ m → q + p ≤ n + m. -Proof. intros. etrans; [by apply Qp_add_le_mono_l|by apply Qp_add_le_mono_r]. Qed. - -Lemma Qp_add_lt_mono_l p q r : p < q ↔ r + p < r + q. -Proof. by rewrite !Qp_lt_nge, <-Qp_add_le_mono_l. Qed. -Lemma Qp_add_lt_mono_r p q r : p < q ↔ p + r < q + r. -Proof. by rewrite !Qp_lt_nge, <-Qp_add_le_mono_r. Qed. -Lemma Qp_add_lt_mono q p n m : q < n → p < m → q + p < n + m. -Proof. intros. etrans; [by apply Qp_add_lt_mono_l|by apply Qp_add_lt_mono_r]. Qed. - -Lemma Qp_mul_le_mono_l p q r : p ≤ q ↔ r * p ≤ r * q. -Proof. - rewrite !Qp_to_Qc_inj_le. destruct p, q, r; by apply Qcmult_le_mono_pos_l. -Qed. -Lemma Qp_mul_le_mono_r p q r : p ≤ q ↔ p * r ≤ q * r. -Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_le_mono_l. Qed. -Lemma Qp_mul_le_mono q p n m : q ≤ n → p ≤ m → q * p ≤ n * m. -Proof. intros. etrans; [by apply Qp_mul_le_mono_l|by apply Qp_mul_le_mono_r]. Qed. + Lemma mul_lt_mono_l p q r : p < q ↔ r * p < r * q. + Proof. + rewrite !to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l. + Qed. + Lemma mul_lt_mono_r p q r : p < q ↔ p * r < q * r. + Proof. rewrite !(comm_L mul _ r). apply mul_lt_mono_l. Qed. + Lemma mul_lt_mono q p n m : q < n → p < m → q * p < n * m. + Proof. intros. etrans; [by apply mul_lt_mono_l|by apply mul_lt_mono_r]. Qed. -Lemma Qp_mul_lt_mono_l p q r : p < q ↔ r * p < r * q. -Proof. - rewrite !Qp_to_Qc_inj_lt. destruct p, q, r; by apply Qcmult_lt_mono_pos_l. -Qed. -Lemma Qp_mul_lt_mono_r p q r : p < q ↔ p * r < q * r. -Proof. rewrite !(comm_L Qp_mul _ r). apply Qp_mul_lt_mono_l. Qed. -Lemma Qp_mul_lt_mono q p n m : q < n → p < m → q * p < n * m. -Proof. intros. etrans; [by apply Qp_mul_lt_mono_l|by apply Qp_mul_lt_mono_r]. Qed. + Lemma lt_add_l p q : p < p + q. + Proof. + destruct p as [p ?], q as [q ?]. apply to_Qc_inj_lt; simpl. + rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l. + Qed. + Lemma lt_add_r p q : q < p + q. + Proof. rewrite (comm_L add). apply lt_add_l. Qed. -Lemma Qp_lt_add_l p q : p < p + q. -Proof. - destruct p as [p ?], q as [q ?]. apply Qp_to_Qc_inj_lt; simpl. - rewrite <- (Qcplus_0_r p) at 1. by rewrite <-Qcplus_lt_mono_l. -Qed. -Lemma Qp_lt_add_r p q : q < p + q. -Proof. rewrite (comm_L Qp_add). apply Qp_lt_add_l. Qed. + Lemma not_add_le_l p q : ¬(p + q ≤ p). + Proof. apply lt_nge, lt_add_l. Qed. + Lemma not_add_le_r p q : ¬(p + q ≤ q). + Proof. apply lt_nge, lt_add_r. Qed. -Lemma Qp_not_add_le_l p q : ¬(p + q ≤ p). -Proof. apply Qp_lt_nge, Qp_lt_add_l. Qed. -Lemma Qp_not_add_le_r p q : ¬(p + q ≤ q). -Proof. apply Qp_lt_nge, Qp_lt_add_r. Qed. + Lemma add_id_free q p : q + p ≠q. + Proof. intro Heq. apply (not_add_le_l q p). by rewrite Heq. Qed. -Lemma Qp_add_id_free q p : q + p ≠q. -Proof. intro Heq. apply (Qp_not_add_le_l q p). by rewrite Heq. Qed. + Lemma le_add_l p q : p ≤ p + q. + Proof. apply lt_le_incl, lt_add_l. Qed. + Lemma le_add_r p q : q ≤ p + q. + Proof. apply lt_le_incl, lt_add_r. Qed. -Lemma Qp_le_add_l p q : p ≤ p + q. -Proof. apply Qp_lt_le_incl, Qp_lt_add_l. Qed. -Lemma Qp_le_add_r p q : q ≤ p + q. -Proof. apply Qp_lt_le_incl, Qp_lt_add_r. Qed. + Lemma sub_Some p q r : p - q = Some r ↔ p = q + r. + Proof. + destruct p as [p Hp], q as [q Hq], r as [r Hr]. + unfold sub, add; simpl; rewrite <-Qp.to_Qc_inj_iff; simpl. split. + - intros; simplify_option_eq. unfold Qcminus. + by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. + - intros ->. unfold Qcminus. + rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc. + rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done]. + f_equal. by apply Qp.to_Qc_inj_iff. + Qed. + Lemma lt_sum p q : p < q ↔ ∃ r, q = p + r. + Proof. + destruct p as [p Hp], q as [q Hq]. rewrite to_Qc_inj_lt; simpl. + split. + - intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt). + apply Qp.to_Qc_inj_iff; simpl. unfold Qcminus. + by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. + - intros [[r ?] ?%Qp.to_Qc_inj_iff]; simplify_eq/=. + rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l. + Qed. -Lemma Qp_sub_Some p q r : p - q = Some r ↔ p = q + r. -Proof. - destruct p as [p Hp], q as [q Hq], r as [r Hr]. - unfold Qp_sub, Qp_add; simpl; rewrite <-Qp_to_Qc_inj_iff; simpl. split. - - intros; simplify_option_eq. unfold Qcminus. - by rewrite (Qcplus_comm p), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. - - intros ->. unfold Qcminus. - rewrite <-Qcplus_assoc, (Qcplus_comm r), Qcplus_assoc. - rewrite Qcplus_opp_r, Qcplus_0_l. simplify_option_eq; [|done]. - f_equal. by apply Qp_to_Qc_inj_iff. -Qed. -Lemma Qp_lt_sum p q : p < q ↔ ∃ r, q = p + r. -Proof. - destruct p as [p Hp], q as [q Hq]. rewrite Qp_to_Qc_inj_lt; simpl. - split. - - intros Hlt%Qclt_minus_iff. exists (mk_Qp (q - p) Hlt). - apply Qp_to_Qc_inj_iff; simpl. unfold Qcminus. - by rewrite (Qcplus_comm q), Qcplus_assoc, Qcplus_opp_r, Qcplus_0_l. - - intros [[r ?] ?%Qp_to_Qc_inj_iff]; simplify_eq/=. - rewrite <-(Qcplus_0_r p) at 1. by apply Qcplus_lt_mono_l. -Qed. + Lemma sub_None p q : p - q = None ↔ p ≤ q. + Proof. + rewrite le_ngt, lt_sum, eq_None_not_Some. + by setoid_rewrite <-sub_Some. + Qed. + Lemma sub_diag p : p - p = None. + Proof. by apply sub_None. Qed. + Lemma add_sub p q : (p + q) - q = Some p. + Proof. apply sub_Some. by rewrite (comm_L add). Qed. -Lemma Qp_sub_None p q : p - q = None ↔ p ≤ q. -Proof. - rewrite Qp_le_ngt, Qp_lt_sum, eq_None_not_Some. - by setoid_rewrite <-Qp_sub_Some. -Qed. -Lemma Qp_sub_diag p : p - p = None. -Proof. by apply Qp_sub_None. Qed. -Lemma Qp_add_sub p q : (p + q) - q = Some p. -Proof. apply Qp_sub_Some. by rewrite (comm_L Qp_add). Qed. + Lemma inv_lt_mono p q : p < q ↔ /q < /p. + Proof. + revert p q. cut (∀ p q, p < q → / q < / p). + { intros help p q. split; [apply help|]. intros. + rewrite <-(inv_involutive p), <-(inv_involutive q). by apply help. } + intros p q Hpq. apply (mul_lt_mono_l _ _ q). rewrite mul_inv_r. + apply (mul_lt_mono_r _ _ p). rewrite <-(assoc_L _), mul_inv_l. + by rewrite mul_1_l, mul_1_r. + Qed. + Lemma inv_le_mono p q : p ≤ q ↔ /q ≤ /p. + Proof. by rewrite !le_ngt, inv_lt_mono. Qed. + + Lemma div_le_mono_l p q r : q ≤ p ↔ r / p ≤ r / q. + Proof. unfold div. by rewrite <-mul_le_mono_l, inv_le_mono. Qed. + Lemma div_le_mono_r p q r : p ≤ q ↔ p / r ≤ q / r. + Proof. apply mul_le_mono_r. Qed. + Lemma div_lt_mono_l p q r : q < p ↔ r / p < r / q. + Proof. unfold div. by rewrite <-mul_lt_mono_l, inv_lt_mono. Qed. + Lemma div_lt_mono_r p q r : p < q ↔ p / r < q / r. + Proof. apply mul_lt_mono_r. Qed. + + Lemma div_lt p q : 1 < q → p / q < p. + Proof. by rewrite (div_lt_mono_l _ _ p), div_1. Qed. + Lemma div_le p q : 1 ≤ q → p / q ≤ p. + Proof. by rewrite (div_le_mono_l _ _ p), div_1. Qed. + + Lemma lower_bound q1 q2 : ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'. + Proof. + revert q1 q2. cut (∀ q1 q2 : Qp, q1 ≤ q2 → + ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'). + { intros help q1 q2. + destruct (lt_ge_cases q2 q1) as [Hlt|Hle]; eauto. + destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto using lt_le_incl. } + intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp. + assert (q1 / 2 < q2) as [q2' ->]%lt_sum. + { eapply lt_le_trans, Hq. by apply div_lt. } + eexists; split; [|done]. by rewrite div_2. + Qed. -Lemma Qp_inv_lt_mono p q : p < q ↔ /q < /p. -Proof. - revert p q. cut (∀ p q, p < q → / q < / p). - { intros help p q. split; [apply help|]. intros. - rewrite <-(Qp_inv_involutive p), <-(Qp_inv_involutive q). by apply help. } - intros p q Hpq. apply (Qp_mul_lt_mono_l _ _ q). rewrite Qp_mul_inv_r. - apply (Qp_mul_lt_mono_r _ _ p). rewrite <-(assoc_L _), Qp_mul_inv_l. - by rewrite Qp_mul_1_l, Qp_mul_1_r. -Qed. -Lemma Qp_inv_le_mono p q : p ≤ q ↔ /q ≤ /p. -Proof. by rewrite !Qp_le_ngt, Qp_inv_lt_mono. Qed. - -Lemma Qp_div_le_mono_l p q r : q ≤ p ↔ r / p ≤ r / q. -Proof. unfold Qp_div. by rewrite <-Qp_mul_le_mono_l, Qp_inv_le_mono. Qed. -Lemma Qp_div_le_mono_r p q r : p ≤ q ↔ p / r ≤ q / r. -Proof. apply Qp_mul_le_mono_r. Qed. -Lemma Qp_div_lt_mono_l p q r : q < p ↔ r / p < r / q. -Proof. unfold Qp_div. by rewrite <-Qp_mul_lt_mono_l, Qp_inv_lt_mono. Qed. -Lemma Qp_div_lt_mono_r p q r : p < q ↔ p / r < q / r. -Proof. apply Qp_mul_lt_mono_r. Qed. - -Lemma Qp_div_lt p q : 1 < q → p / q < p. -Proof. by rewrite (Qp_div_lt_mono_l _ _ p), Qp_div_1. Qed. -Lemma Qp_div_le p q : 1 ≤ q → p / q ≤ p. -Proof. by rewrite (Qp_div_le_mono_l _ _ p), Qp_div_1. Qed. - -Lemma Qp_lower_bound q1 q2 : ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'. -Proof. - revert q1 q2. cut (∀ q1 q2 : Qp, q1 ≤ q2 → - ∃ q q1' q2', q1 = q + q1' ∧ q2 = q + q2'). - { intros help q1 q2. - destruct (Qp_lt_ge_cases q2 q1) as [Hlt|Hle]; eauto. - destruct (help q2 q1) as (q&q1'&q2'&?&?); eauto using Qp_lt_le_incl. } - intros q1 q2 Hq. exists (q1 / 2)%Qp, (q1 / 2)%Qp. - assert (q1 / 2 < q2) as [q2' ->]%Qp_lt_sum. - { eapply Qp_lt_le_trans, Hq. by apply Qp_div_lt. } - eexists; split; [|done]. by rewrite Qp_div_2. -Qed. + Lemma lower_bound_lt q1 q2 : ∃ q : Qp, q < q1 ∧ q < q2. + Proof. + destruct (lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]). + exists qmin. split; eapply lt_sum; eauto. + Qed. -Lemma Qp_lower_bound_lt q1 q2 : ∃ q : Qp, q < q1 ∧ q < q2. -Proof. - destruct (Qp_lower_bound q1 q2) as (qmin & q1' & q2' & [-> ->]). - exists qmin. split; eapply Qp_lt_sum; eauto. -Qed. + Lemma cross_split a b c d : + a + b = c + d → + ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d. + Proof. + intros H. revert a b c d H. cut (∀ a b c d : Qp, + a < c → a + b = c + d → + ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp. + { intros help a b c d Habcd. + destruct (lt_ge_cases a c) as [?|[?| ->]%le_lteq]. + - auto. + - destruct (help c d a b); [done..|]. naive_solver. + - apply (inj (add a)) in Habcd as ->. + destruct (lower_bound a d) as (q&a'&d'&->&->). + exists a', q, q, d'. repeat split; done || by rewrite (comm_L add). } + intros a b c d [e ->]%lt_sum. rewrite <-(assoc_L _). intros ->%(inj (add a)). + destruct (lower_bound a d) as (q&a'&d'&->&->). + eexists a', q, (q + e)%Qp, d'; split_and?; [by rewrite (comm_L add)|..|done]. + - by rewrite (assoc_L _), (comm_L add e). + - by rewrite (assoc_L _), (comm_L add a'). + Qed. -Lemma Qp_cross_split a b c d : - a + b = c + d → - ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d. -Proof. - intros H. revert a b c d H. cut (∀ a b c d : Qp, - a < c → a + b = c + d → - ∃ ac ad bc bd, ac + ad = a ∧ bc + bd = b ∧ ac + bc = c ∧ ad + bd = d)%Qp. - { intros help a b c d Habcd. - destruct (Qp_lt_ge_cases a c) as [?|[?| ->]%Qp_le_lteq]. - - auto. - - destruct (help c d a b); [done..|]. naive_solver. - - apply (inj (Qp_add a)) in Habcd as ->. - destruct (Qp_lower_bound a d) as (q&a'&d'&->&->). - exists a', q, q, d'. repeat split; done || by rewrite (comm_L Qp_add). } - intros a b c d [e ->]%Qp_lt_sum. rewrite <-(assoc_L _). intros ->%(inj (Qp_add a)). - destruct (Qp_lower_bound a d) as (q&a'&d'&->&->). - eexists a', q, (q + e)%Qp, d'; split_and?; [by rewrite (comm_L Qp_add)|..|done]. - - by rewrite (assoc_L _), (comm_L Qp_add e). - - by rewrite (assoc_L _), (comm_L Qp_add a'). -Qed. + Lemma bounded_split p r : ∃ q1 q2 : Qp, q1 ≤ r ∧ p = q1 + q2. + Proof. + destruct (lt_ge_cases r p) as [[q ->]%lt_sum|?]. + { by exists r, q. } + exists (p / 2)%Qp, (p / 2)%Qp; split. + + trans p; [|done]. by apply div_le. + + by rewrite div_2. + Qed. -Lemma Qp_bounded_split p r : ∃ q1 q2 : Qp, q1 ≤ r ∧ p = q1 + q2. -Proof. - destruct (Qp_lt_ge_cases r p) as [[q ->]%Qp_lt_sum|?]. - { by exists r, q. } - exists (p / 2)%Qp, (p / 2)%Qp; split. - + trans p; [|done]. by apply Qp_div_le. - + by rewrite Qp_div_2. -Qed. + Lemma max_spec q p : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). + Proof. + unfold max. + destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|]. + right. split; [|done]. by apply lt_le_incl, lt_nge. + Qed. -Lemma Qp_max_spec q p : (q < p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). -Proof. - unfold Qp_max. - destruct (decide (q ≤ p)) as [[?| ->]%Qp_le_lteq|?]; [by auto..|]. - right. split; [|done]. by apply Qp_lt_le_incl, Qp_lt_nge. -Qed. + Lemma max_spec_le q p : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). + Proof. destruct (max_spec q p) as [[?%lt_le_incl?]|]; [left|right]; done. Qed. -Lemma Qp_max_spec_le q p : (q ≤ p ∧ q `max` p = p) ∨ (p ≤ q ∧ q `max` p = q). -Proof. destruct (Qp_max_spec q p) as [[?%Qp_lt_le_incl?]|]; [left|right]; done. Qed. + Global Instance max_assoc : Assoc (=) max. + Proof. + intros q p o. unfold max. destruct (decide (q ≤ p)), (decide (p ≤ o)); + try by rewrite ?decide_True by (by etrans). + rewrite decide_False by done. + by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge). + Qed. + Global Instance max_comm : Comm (=) max. + Proof. + intros q p. + destruct (max_spec_le q p) as [[?->]|[?->]], + (max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm (≤)). + Qed. -Global Instance Qp_max_assoc : Assoc (=) Qp_max. -Proof. - intros q p o. unfold Qp_max. destruct (decide (q ≤ p)), (decide (p ≤ o)); - try by rewrite ?decide_True by (by etrans). - rewrite decide_False by done. - by rewrite decide_False by (apply Qp_lt_nge; etrans; by apply Qp_lt_nge). -Qed. -Global Instance Qp_max_comm : Comm (=) Qp_max. -Proof. - intros q p. - destruct (Qp_max_spec_le q p) as [[?->]|[?->]], - (Qp_max_spec_le p q) as [[?->]|[?->]]; done || by apply (anti_symm (≤)). -Qed. + Lemma max_id q : q `max` q = q. + Proof. by destruct (max_spec q q) as [[_->]|[_->]]. Qed. -Lemma Qp_max_id q : q `max` q = q. -Proof. by destruct (Qp_max_spec q q) as [[_->]|[_->]]. Qed. + Lemma le_max_l q p : q ≤ q `max` p. + Proof. unfold max. by destruct (decide (q ≤ p)). Qed. + Lemma le_max_r q p : p ≤ q `max` p. + Proof. rewrite (comm_L max q). apply le_max_l. Qed. -Lemma Qp_le_max_l q p : q ≤ q `max` p. -Proof. unfold Qp_max. by destruct (decide (q ≤ p)). Qed. -Lemma Qp_le_max_r q p : p ≤ q `max` p. -Proof. rewrite (comm_L Qp_max q). apply Qp_le_max_l. Qed. + Lemma max_add q p : q `max` p ≤ q + p. + Proof. + unfold max. + destruct (decide (q ≤ p)); [apply le_add_r|apply le_add_l]. + Qed. -Lemma Qp_max_add q p : q `max` p ≤ q + p. -Proof. - unfold Qp_max. - destruct (decide (q ≤ p)); [apply Qp_le_add_r|apply Qp_le_add_l]. -Qed. + Lemma max_lub_l q p o : q `max` p ≤ o → q ≤ o. + Proof. unfold max. destruct (decide (q ≤ p)); [by etrans|done]. Qed. + Lemma max_lub_r q p o : q `max` p ≤ o → p ≤ o. + Proof. rewrite (comm _ q). apply max_lub_l. Qed. -Lemma Qp_max_lub_l q p o : q `max` p ≤ o → q ≤ o. -Proof. unfold Qp_max. destruct (decide (q ≤ p)); [by etrans|done]. Qed. -Lemma Qp_max_lub_r q p o : q `max` p ≤ o → p ≤ o. -Proof. rewrite (comm _ q). apply Qp_max_lub_l. Qed. + Lemma min_spec q p : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). + Proof. + unfold min. + destruct (decide (q ≤ p)) as [[?| ->]%le_lteq|?]; [by auto..|]. + right. split; [|done]. by apply lt_le_incl, lt_nge. + Qed. -Lemma Qp_min_spec q p : (q < p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). -Proof. - unfold Qp_min. - destruct (decide (q ≤ p)) as [[?| ->]%Qp_le_lteq|?]; [by auto..|]. - right. split; [|done]. by apply Qp_lt_le_incl, Qp_lt_nge. -Qed. + Lemma min_spec_le q p : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). + Proof. destruct (min_spec q p) as [[?%lt_le_incl ?]|]; [left|right]; done. Qed. -Lemma Qp_min_spec_le q p : (q ≤ p ∧ q `min` p = q) ∨ (p ≤ q ∧ q `min` p = p). -Proof. destruct (Qp_min_spec q p) as [[?%Qp_lt_le_incl ?]|]; [left|right]; done. Qed. + Global Instance min_assoc : Assoc (=) min. + Proof. + intros q p o. unfold min. + destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False. + - by rewrite !decide_True by (by etrans). + - by rewrite decide_False by (apply lt_nge; etrans; by apply lt_nge). + Qed. + Global Instance min_comm : Comm (=) min. + Proof. + intros q p. + destruct (min_spec_le q p) as [[?->]|[?->]], + (min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm (≤)). + Qed. -Global Instance Qp_min_assoc : Assoc (=) Qp_min. -Proof. - intros q p o. unfold Qp_min. - destruct (decide (q ≤ p)), (decide (p ≤ o)); eauto using decide_False. - - by rewrite !decide_True by (by etrans). - - by rewrite decide_False by (apply Qp_lt_nge; etrans; by apply Qp_lt_nge). -Qed. -Global Instance Qp_min_comm : Comm (=) Qp_min. -Proof. - intros q p. - destruct (Qp_min_spec_le q p) as [[?->]|[?->]], - (Qp_min_spec_le p q) as [[? ->]|[? ->]]; done || by apply (anti_symm (≤)). -Qed. + Lemma min_id q : q `min` q = q. + Proof. by destruct (min_spec q q) as [[_->]|[_->]]. Qed. + Lemma le_min_r q p : q `min` p ≤ p. + Proof. by destruct (min_spec_le q p) as [[?->]|[?->]]. Qed. -Lemma Qp_min_id q : q `min` q = q. -Proof. by destruct (Qp_min_spec q q) as [[_->]|[_->]]. Qed. -Lemma Qp_le_min_r q p : q `min` p ≤ p. -Proof. by destruct (Qp_min_spec_le q p) as [[?->]|[?->]]. Qed. + Lemma le_min_l p q : p `min` q ≤ p. + Proof. rewrite (comm_L min p). apply le_min_r. Qed. -Lemma Qp_le_min_l p q : p `min` q ≤ p. -Proof. rewrite (comm_L Qp_min p). apply Qp_le_min_r. Qed. + Lemma min_l_iff q p : q `min` p = q ↔ q ≤ p. + Proof. + destruct (min_spec_le q p) as [[?->]|[?->]]; [done|]. + split; [by intros ->|]. intros. by apply (anti_symm (≤)). + Qed. + Lemma min_r_iff q p : q `min` p = p ↔ p ≤ q. + Proof. rewrite (comm_L min q). apply min_l_iff. Qed. +End Qp. -Lemma Qp_min_l_iff q p : q `min` p = q ↔ q ≤ p. -Proof. - destruct (Qp_min_spec_le q p) as [[?->]|[?->]]; [done|]. - split; [by intros ->|]. intros. by apply (anti_symm (≤)). -Qed. -Lemma Qp_min_r_iff q p : q `min` p = p ↔ p ≤ q. -Proof. rewrite (comm_L Qp_min q). apply Qp_min_l_iff. Qed. +Export Qp.notations. Lemma pos_to_Qp_1 : pos_to_Qp 1 = 1. Proof. compute_done. Qed. @@ -1300,13 +1307,13 @@ Proof. by injection 1. Qed. Lemma pos_to_Qp_inj_iff n m : pos_to_Qp n = pos_to_Qp m ↔ n = m. Proof. split; [apply pos_to_Qp_inj|by intros ->]. Qed. Lemma pos_to_Qp_inj_le n m : (n ≤ m)%positive ↔ pos_to_Qp n ≤ pos_to_Qp m. -Proof. rewrite Qp_to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed. +Proof. rewrite Qp.to_Qc_inj_le; simpl. by rewrite <-Z2Qc_inj_le. Qed. Lemma pos_to_Qp_inj_lt n m : (n < m)%positive ↔ pos_to_Qp n < pos_to_Qp m. -Proof. by rewrite Pos.lt_nle, Qp_lt_nge, <-pos_to_Qp_inj_le. Qed. +Proof. by rewrite Pos.lt_nle, Qp.lt_nge, <-pos_to_Qp_inj_le. Qed. Lemma pos_to_Qp_add x y : pos_to_Qp x + pos_to_Qp y = pos_to_Qp (x + y). -Proof. apply Qp_to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed. +Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_add, Z2Qc_inj_add. Qed. Lemma pos_to_Qp_mul x y : pos_to_Qp x * pos_to_Qp y = pos_to_Qp (x * y). -Proof. apply Qp_to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed. +Proof. apply Qp.to_Qc_inj_iff; simpl. by rewrite Pos2Z.inj_mul, Z2Qc_inj_mul. Qed. Local Close Scope Qp_scope. -- GitLab