diff --git a/theories/channel/proto.v b/theories/channel/proto.v index cfac3f33a8122ea8e8ed55e2131ecce0cf7a7c02..067baf5dccb8272f32d38adcced68d77af4db7cf 100644 --- a/theories/channel/proto.v +++ b/theories/channel/proto.v @@ -566,13 +566,20 @@ Section proto. (<?> m1) ⊑ (<!> m2). Proof. rewrite iProto_le_unfold. iIntros "H". iRight. auto 10. Qed. - Lemma iProto_le_end_inv p : p ⊑ END -∗ ◇ (p ≡ END). + Lemma iProto_le_end_inv_l p : p ⊑ END -∗ ◇ (p ≡ END). Proof. rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //". iDestruct "H" as (a1 a2 m1 m2) "(_ & >Heq & _)". by iDestruct (iProto_end_message_equivI with "Heq") as %[]. Qed. + Lemma iProto_le_end_inv_r p : END ⊑ p -∗ ◇ (p ≡ END). + Proof. + rewrite iProto_le_unfold. iIntros "[[_ Hp]|H] //". + iDestruct "H" as (a1 a2 m1 m2) "(>Heq & _ & _)". + iDestruct (iProto_end_message_equivI with "Heq") as %[]. + Qed. + Lemma iProto_le_send_inv p1 m2 : p1 ⊑ (<!> m2) -∗ ∃ a1 m1, ◇ (p1 ≡ <a1> m1) ∗ @@ -658,7 +665,7 @@ Section proto. Proof. iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3). destruct (iProto_case p3) as [->|([]&m3&->)]. - - iMod (iProto_le_end_inv with "H2") as "H2". by iRewrite "H2" in "H1". + - iMod (iProto_le_end_inv_l with "H2") as "H2". by iRewrite "H2" in "H1". - iDestruct (iProto_le_send_inv with "H2") as (a2 m2) "[>Hp2 H2]". iRewrite "Hp2" in "H1"; clear p2. destruct a2. + iDestruct (iProto_le_send_inv with "H1") as (a1 m1) "[>Hp1 H1]". @@ -753,6 +760,28 @@ Section proto. - iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". by iApply (iProto_le_recv_recv_inv with "H"). Qed. + + Lemma iProto_le_exist_elim_l_inhabited `{!Inhabited A} (m : A → iMsg Σ V) p : + (∀ x, (<?> m x) ⊑ p) -∗ + (<? x> m x) ⊑ p. + Proof. + rewrite iMsg_exist_eq. iIntros "H". + destruct (iProto_case p) as [Heq | [a [m' Heq]]]. + - unshelve iSpecialize ("H" $!inhabitant); first by apply _. + rewrite Heq. + iMod (iProto_le_end_inv_l with "H") as "H". + rewrite iProto_end_eq iProto_message_eq. + iDestruct (proto_message_end_equivI with "H") as "[]". + - iEval (rewrite Heq). destruct a. + + iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 Hm2 /=". + iDestruct "Hm1" as (x) "Hm1". + iSpecialize ("H" $! x). rewrite Heq. + iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). + + iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". + iSpecialize ("H" $! x). rewrite Heq. + by iApply (iProto_le_recv_recv_inv with "H"). + Qed. + Lemma iProto_le_exist_elim_r {A} a m1 (m2 : A → iMsg Σ V) : (∀ x, (<a> m1) ⊑ (<!> m2 x)) -∗ (<a> m1) ⊑ (<! x> m2 x). @@ -764,6 +793,26 @@ Section proto. iDestruct 1 as (x) "Hm2". iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). Qed. + Lemma iProto_le_exist_elim_r_inhabited `{Hinh : Inhabited A} p (m : A → iMsg Σ V) : + (∀ x, p ⊑ (<!> m x)) -∗ + p ⊑ (<! x> m x). + Proof. + rewrite iMsg_exist_eq. iIntros "H". + destruct (iProto_case p) as [Heq | [a [m' Heq]]]. + - unshelve iSpecialize ("H" $!inhabitant); first by apply _. + rewrite Heq. + iMod (iProto_le_end_inv_r with "H") as "H". + rewrite iProto_end_eq iProto_message_eq. + iDestruct (proto_message_end_equivI with "H") as "[]". + - iEval (rewrite Heq). destruct a. + + iApply iProto_le_send. iIntros (v p2'). iDestruct 1 as (x) "Hm". + iSpecialize ("H" $! x). rewrite Heq. + by iApply (iProto_le_send_send_inv with "H"). + + iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1". + iDestruct 1 as (x) "Hm2". + iSpecialize ("H" $! x). rewrite Heq. + iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). + Qed. Lemma iProto_le_exist_intro_l {A} (m : A → iMsg Σ V) a : ⊢ (<! x> m x) ⊑ (<!> m a). Proof. @@ -810,7 +859,7 @@ Section proto. Proof. iIntros "H". iLöb as "IH" forall (p1 p2). destruct (iProto_case p1) as [->|([]&m1&->)]. - - iMod (iProto_le_end_inv with "H") as "H". + - iMod (iProto_le_end_inv_l with "H") as "H". iRewrite "H". iApply iProto_le_refl. - iDestruct (iProto_le_send_inv with "H") as (a2 m2) "[>Hp2 H]". iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message). @@ -853,7 +902,7 @@ Section proto. Proof. iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3 p4). destruct (iProto_case p2) as [->|([]&m2&->)]. - - iMod (iProto_le_end_inv with "H1") as "H1". + - iMod (iProto_le_end_inv_l with "H1") as "H1". iRewrite "H1". by rewrite !left_id. - iDestruct (iProto_le_send_inv with "H1") as (a1 m1) "[>Hp1 H1]". iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. destruct a1; simpl. diff --git a/theories/logrel/examples/double.v b/theories/logrel/examples/double.v index bf718e6f36e4861e2dc1f821d899a117b90f72ee..28980c4670309ee8d238c9a261588323b368e34b 100755 --- a/theories/logrel/examples/double.v +++ b/theories/logrel/examples/double.v @@ -85,14 +85,14 @@ Section double. Qed. Lemma prog_typed : - ⊢ ∅ ⊨ prog : chan (<??> lty_int; <??> lty_int; END) ⊸ lty_int * lty_int. + ⊢ ∅ ⊨ prog : chan (<??> TY lty_int; <??> TY lty_int; END) ⊸ lty_int * lty_int. Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iSplitL; last by iApply env_ltyped_empty. iIntros (c) "Hc". iApply (wp_prog with "[Hc]"). - { iApply (iProto_mapsto_le _ (lsty_car (<??> lty_int; <??> lty_int; END)) with "Hc"). + { iApply (iProto_mapsto_le _ (lsty_car (<??> TY lty_int; <??> TY lty_int; END)) with "Hc"). iIntros "!> !>" (v1). iMod 1 as %[x1 ->]. iExists x1. iIntros "!>" (v2). iMod 1 as %[x2 ->]. iExists x2. auto. } iIntros "!>" (k1 k2 _). diff --git a/theories/logrel/examples/pair.v b/theories/logrel/examples/pair.v index 78081802e41d7a156316f34cf93bc4f5a4787a5a..77074ab3da3e301548da9ff8b1199d37d6ca6c44 100644 --- a/theories/logrel/examples/pair.v +++ b/theories/logrel/examples/pair.v @@ -7,7 +7,7 @@ Section pair. Context `{heapG Σ, chanG Σ}. Lemma prog_typed : - ⊢ ∅ ⊨ prog : chan (<??> lty_int; <??> lty_int; END) ⊸ lty_int * lty_int. + ⊢ ∅ ⊨ prog : chan (<??> TY lty_int; <??> TY lty_int; END) ⊸ lty_int * lty_int. Proof. rewrite /prog. iApply ltyped_lam. iApply ltyped_pair. diff --git a/theories/logrel/session_types.v b/theories/logrel/session_types.v index 9ba6d36d20812d2df09131ab41c3879c295deb58..8289817c72d32b6d31fffbfd4967886e2e11b04d 100644 --- a/theories/logrel/session_types.v +++ b/theories/logrel/session_types.v @@ -2,10 +2,20 @@ From iris.algebra Require Export gmap. From actris.logrel Require Export model. From actris.channel Require Export channel. +Definition lmsg Σ := iMsg Σ. +Delimit Scope lmsg_scope with lmsg. +Bind Scope lmsg_scope with lmsg. + +Definition lty_msg_exist {Σ} {k} (M : lty Σ k → lmsg Σ) : lmsg Σ := + (∃ v, M v)%msg. + +Definition lty_msg_base {Σ} (A : ltty Σ) (S : lsty Σ) : lmsg Σ := + (∃ v, MSG v {{ ▷ ltty_car A v}} ; (lsty_car S))%msg. + Definition lty_end {Σ} : lsty Σ := Lsty END. -Definition lty_message {Σ} (a : action) (A : ltty Σ) (S : lsty Σ) : lsty Σ := - Lsty (<a@v> MSG v {{ ▷ ltty_car A v }}; lsty_car S). +Definition lty_message {Σ} (a : action) (M : lmsg Σ) : lsty Σ := + Lsty (<a> M). Definition lty_choice {Σ} (a : action) (Ss : gmap Z (lsty Σ)) : lsty Σ := Lsty (<a@(x : Z)> MSG #x {{ ⌜is_Some (Ss !! x)⌠}}; lsty_car (Ss !!! x)). @@ -20,11 +30,25 @@ Instance: Params (@lty_choice) 2 := {}. Instance: Params (@lty_dual) 1 := {}. Instance: Params (@lty_app) 1 := {}. +Notation "'TY' A ; S" := (lty_msg_base A S) + (at level 200, right associativity, + format "'TY' A ; S") : lmsg_scope. +Notation "∃ x .. y , m" := + (lty_msg_exist (λ x, .. (lty_msg_exist (λ y, m)) ..)%lmsg) : lmsg_scope. + Notation "'END'" := lty_end : lty_scope. -Notation "<!!> A ; S" := - (lty_message Send A S) (at level 20, A, S at level 200) : lty_scope. -Notation "<??> A ; S" := - (lty_message Recv A S) (at level 20, A, S at level 200) : lty_scope. +Notation "<!!> M" := + (lty_message Send M) (at level 200, M at level 200) : lty_scope. +Notation "<!! x1 .. xn > M" := + (lty_message Send (∃ x1, .. (∃ xn, M) ..)) + (at level 200, x1 closed binder, xn closed binder, M at level 200, + format "<!! x1 .. xn > M") : lty_scope. +Notation "<??> M" := + (lty_message Recv M) (at level 200, M at level 200) : lty_scope. +Notation "<?? x1 .. xn > M" := + (lty_message Recv (∃ x1, .. (∃ xn, M) ..)) + (at level 200, x1 closed binder, xn closed binder, M at level 200, + format "<?? x1 .. xn > M") : lty_scope. Notation lty_select := (lty_choice Send). Notation lty_branch := (lty_choice Recv). Infix "<++>" := lty_app (at level 60) : lty_scope. @@ -34,15 +58,27 @@ Notation "(.<++> T )" := (λ S, lty_app S T) (only parsing) : lty_scope. Section session_types. Context {Σ : gFunctors}. - Global Instance lty_message_ne a : NonExpansive2 (@lty_message Σ a). + Global Instance lty_msg_exist_ne k : + Proper (pointwise_relation _ (dist n) ==> (dist n)) (@lty_msg_exist Σ k). Proof. solve_proper. Qed. - Global Instance lty_message_proper a : - Proper ((≡) ==> (≡) ==> (≡)) (@lty_message Σ a). - Proof. apply ne_proper_2, _. Qed. - Global Instance lty_message_contractive n a : - Proper (dist_later n ==> dist_later n ==> dist n) (@lty_message Σ a). + Global Instance lty_msg_exist_proper k : + Proper (pointwise_relation _ (≡) ==> (≡)) (@lty_msg_exist Σ k). + Proof. solve_proper. Qed. + Global Instance lty_msg_base_ne : NonExpansive2 (@lty_msg_base Σ). + Proof. rewrite /lty_msg_base. solve_proper. Qed. + Global Instance lty_msg_base_proper : + Proper ((≡) ==> (≡) ==> (≡)) (@lty_msg_base Σ). + Proof. rewrite /lty_msg_base. apply ne_proper_2, _. Qed. + Global Instance lty_msg_base_contractive n : + Proper (dist_later n ==> dist_later n ==> dist n) (@lty_msg_base Σ). Proof. solve_contractive. Qed. + Global Instance lty_message_ne a : NonExpansive (@lty_message Σ a). + Proof. solve_proper. Qed. + Global Instance lty_message_proper a : + Proper ((≡) ==> (≡)) (@lty_message Σ a). + Proof. apply ne_proper, _. Qed. + Global Instance lty_choice_ne a : NonExpansive (@lty_choice Σ a). Proof. solve_proper. Qed. Global Instance lty_choice_proper a : Proper ((≡) ==> (≡)) (@lty_choice Σ a). diff --git a/theories/logrel/subtyping_rules.v b/theories/logrel/subtyping_rules.v index 1a7342aa8862f2c60ad7512e21f50438c149047c..ce565880e20606566acbac0de84336670c98a32a 100644 --- a/theories/logrel/subtyping_rules.v +++ b/theories/logrel/subtyping_rules.v @@ -248,7 +248,7 @@ Section subtyping_rules. (** Session subtyping *) Lemma lty_le_send A1 A2 S1 S2 : ▷ (A2 <: A1) -∗ ▷ (S1 <: S2) -∗ - (<!!> A1 ; S1) <: (<!!> A2 ; S2). + (<!!> TY A1 ; S1) <: (<!!> TY A2 ; S2). Proof. iIntros "#HAle #HSle !>" (v) "H". iExists v. iDestruct ("HAle" with "H") as "$". by iModIntro. @@ -256,14 +256,32 @@ Section subtyping_rules. Lemma lty_le_recv A1 A2 S1 S2 : ▷ (A1 <: A2) -∗ ▷ (S1 <: S2) -∗ - (<??> A1 ; S1) <: (<??> A2 ; S2). + (<??> TY A1 ; S1) <: (<??> TY A2 ; S2). Proof. iIntros "#HAle #HSle !>" (v) "H". iExists v. iDestruct ("HAle" with "H") as "$". by iModIntro. Qed. + Lemma lty_le_exist_elim_l k (M : lty Σ k → lmsg Σ) S : + (∀ (A : lty Σ k), (<??> M A) <: S) -∗ + ((<?? (A : lty Σ k)> M A) <: S). + Proof. iIntros "#Hle !>". iApply (iProto_le_exist_elim_l_inhabited M). auto. Qed. + + Lemma lty_le_exist_elim_r k (M : lty Σ k → lmsg Σ) S : + (∀ (A : lty Σ k), S <: (<!!> M A)) -∗ + (S <: (<!! (A : lty Σ k)> M A)). + Proof. iIntros "#Hle !>". iApply (iProto_le_exist_elim_r_inhabited _ M). auto. Qed. + + Lemma lty_le_exist_intro_l k (M : lty Σ k → lmsg Σ) (A : lty Σ k) : + ⊢ (<! X> M X) ⊑ (<!> M A). + Proof. by iApply (iProto_le_exist_intro_l). Qed. + + Lemma lty_le_exist_intro_r k (M : lty Σ k → lmsg Σ) (A : lty Σ k) : + ⊢ (<?> M A) ⊑ (<? X> M X). + Proof. by iApply (iProto_le_exist_intro_r). Qed. + Lemma lty_le_swap_recv_send A1 A2 S : - ⊢ (<??> A1; <!!> A2; S) <: (<!!> A2; <??> A1; S). + ⊢ (<??> TY A1; <!!> TY A2; S) <: (<!!> TY A2; <??> TY A1; S). Proof. iIntros "!>" (v1 v2). iApply iProto_le_trans; @@ -274,7 +292,7 @@ Section subtyping_rules. Qed. Lemma lty_le_swap_recv_select A Ss : - ⊢ (<??> A; lty_select Ss) <: lty_select ((λ S, <??> A; S) <$> Ss)%lty. + ⊢ (<??> TY A; lty_select Ss) <: lty_select ((λ S, <??> TY A; S) <$> Ss)%lty. Proof. iIntros "!>" (v1 x2). iApply iProto_le_trans; @@ -286,7 +304,7 @@ Section subtyping_rules. Qed. Lemma lty_le_swap_branch_send A Ss : - ⊢ lty_branch ((λ S, <!!> A; S) <$> Ss)%lty <: (<!!> A; lty_branch Ss). + ⊢ lty_branch ((λ S, <!!> TY A; S) <$> Ss)%lty <: (<!!> TY A; lty_branch Ss). Proof. iIntros "!>" (x1 v2). iApply iProto_le_trans; @@ -353,12 +371,12 @@ Section subtyping_rules. ⊢ (S1 <++> S2) <++> S3 <:> S1 <++> (S2 <++> S3). Proof. rewrite /lty_app assoc. iSplit; by iModIntro. Qed. - Lemma lty_le_app_send A S1 S2 : ⊢ (<!!> A; S1) <++> S2 <:> (<!!> A; S1 <++> S2). + Lemma lty_le_app_send A S1 S2 : ⊢ (<!!> TY A; S1) <++> S2 <:> (<!!> TY A; S1 <++> S2). Proof. rewrite /lty_app iProto_app_message iMsg_app_exist. setoid_rewrite iMsg_app_base. iSplit; by iIntros "!> /=". Qed. - Lemma lty_le_app_recv A S1 S2 : ⊢ (<??> A; S1) <++> S2 <:> (<??> A; S1 <++> S2). + Lemma lty_le_app_recv A S1 S2 : ⊢ (<??> TY A; S1) <++> S2 <:> (<??> TY A; S1 <++> S2). Proof. rewrite /lty_app iProto_app_message iMsg_app_exist. setoid_rewrite iMsg_app_base. iSplit; by iIntros "!> /=". @@ -391,14 +409,14 @@ Section subtyping_rules. Proof. rewrite /lty_dual iProto_dual_end=> /=. apply lty_bi_le_refl. Qed. Lemma lty_le_dual_message a A S : - ⊢ lty_dual (lty_message a A S) <:> lty_message (action_dual a) A (lty_dual S). + ⊢ lty_dual (lty_message a (TY A; S)) <:> lty_message (action_dual a) (TY A; (lty_dual S)). Proof. rewrite /lty_dual iProto_dual_message iMsg_dual_exist. setoid_rewrite iMsg_dual_base. iSplit; by iIntros "!> /=". Qed. - Lemma lty_le_dual_send A S : ⊢ lty_dual (<!!> A; S) <:> (<??> A; lty_dual S). + Lemma lty_le_dual_send A S : ⊢ lty_dual (<!!> TY A; S) <:> (<??> TY A; lty_dual S). Proof. apply lty_le_dual_message. Qed. - Lemma lty_le_dual_recv A S : ⊢ lty_dual (<??> A; S) <:> (<!!> A; lty_dual S). + Lemma lty_le_dual_recv A S : ⊢ lty_dual (<??> TY A; S) <:> (<!!> TY A; lty_dual S). Proof. apply lty_le_dual_message. Qed. Lemma lty_le_dual_choice a (Ss : gmap Z (lsty Σ)) : diff --git a/theories/logrel/term_typing_rules.v b/theories/logrel/term_typing_rules.v index 1506efea987be3ea636f45f93fc621d98a33f698..fb4b2ce41287d5882c22ebb2ae1f38e097b4f6ed 100644 --- a/theories/logrel/term_typing_rules.v +++ b/theories/logrel/term_typing_rules.v @@ -460,7 +460,7 @@ Section properties. Definition chansend : val := λ: "chan" "val", send "chan" "val";; "chan". Lemma ltyped_chansend A S : - ⊢ ∅ ⊨ chansend : chan (<!!> A; S) → A ⊸ chan S. + ⊢ ∅ ⊨ chansend : chan (<!!> TY A; S) → A ⊸ chan S. Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iSplitL; last by iApply env_ltyped_empty. @@ -470,7 +470,7 @@ Section properties. Qed. Lemma ltyped_send Γ Γ' (x : string) e A S : - (Γ ⊨ e : A ⫤ <[x:=(chan (<!!> A; S))%lty]> Γ') -∗ + (Γ ⊨ e : A ⫤ <[x:=(chan (<!!> TY A; S))%lty]> Γ') -∗ Γ ⊨ send x e : () ⫤ <[x:=(chan S)%lty]> Γ'. Proof. iIntros "#He !>" (vs) "HΓ"=> /=. @@ -488,7 +488,7 @@ Section properties. Definition chanrecv : val := λ: "chan", (recv "chan", "chan"). Lemma ltyped_chanrecv A S : - ⊢ ∅ ⊨ chanrecv : chan (<??> A; S) → A * chan S. + ⊢ ∅ ⊨ chanrecv : chan (<??> TY A; S) → A * chan S. Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iSplitL; last by iApply env_ltyped_empty. @@ -498,7 +498,7 @@ Section properties. Qed. Lemma ltyped_recv Γ (x : string) A S : - ⊢ <[x := (chan (<??> A; S))%lty]> Γ ⊨ recv x : A ⫤ <[x:=(chan S)%lty]> Γ. + ⊢ <[x := (chan (<??> TY A; S))%lty]> Γ ⊨ recv x : A ⫤ <[x:=(chan S)%lty]> Γ. Proof. iIntros "!>" (vs) "HΓ"=> /=. iDestruct (env_ltyped_lookup with "HΓ") as (v' Heq) "[Hc HΓ]".