diff --git a/theories/examples/map_swap.v b/theories/examples/map_swap.v new file mode 100644 index 0000000000000000000000000000000000000000..6788ba7684ca7d5cab4d676e4d22ba3c61547003 --- /dev/null +++ b/theories/examples/map_swap.v @@ -0,0 +1,57 @@ +(** This file implements a distributed mapper service, a specification thereof, +and its proofs. *) +From actris.channel Require Import proofmode. +From iris.heap_lang Require Import lib.spin_lock. +From actris.utils Require Import llist contribution. +From iris.algebra Require Import gmultiset. + +(** * Correctness proofs of the distributed version *) +Class mapG Σ A `{Countable A} := { + map_contributionG :> contributionG Σ (gmultisetUR A); + map_lockG :> lockG Σ; +}. + +Section map. + Context `{Countable A} {B : Type}. + Context `{!heapG Σ, !chanG Σ, !mapG Σ A}. + Context (IA : A → val → iProp Σ) (IB : B → val → iProp Σ) (map : A → list B). + Local Open Scope nat_scope. + Implicit Types n : nat. + + Definition map_spec (vmap : val) : iProp Σ := (∀ x v, + {{{ IA x v }}} vmap v {{{ l, RET #l; llist IB l (map x) }}})%I. + + Definition map_protocol_recv_aux (rec : gmultiset A -d> iProto Σ) : + gmultiset A -d> iProto Σ := + λ X, + (if decide (X ≠∅) then END else + <! x (l : loc)> MSG #l {{ ⌜ x ∈ X ⌠∗ llist IB l (map x) }}; + rec (X ∖ {[ x ]}))%proto. + Instance map_protocol_recv_aux_contractive : Contractive map_protocol_recv_aux. + Proof. solve_proper_prepare. f_equiv. solve_proto_contractive. Qed. + Definition map_protocol_recv := fixpoint map_protocol_recv_aux. + Global Instance map_protocol_recv_unfold X : + ProtoUnfold (map_protocol_recv X) (map_protocol_recv_aux map_protocol_recv X). + Proof. apply proto_unfold_eq, (fixpoint_unfold map_protocol_recv_aux). Qed. + + Definition map_protocol_aux (rec : nat -d> gmultiset A -d> iProto Σ) : + nat -d> gmultiset A -d> iProto Σ := λ n X, + let rec : nat → gmultiset A → iProto Σ := rec in + (if n is 0 then map_protocol_recv X else + ((<?x v> MSG v {{ IA x v }}; rec n (X ⊎ {[ x ]})) + <&> + rec (pred n) X))%proto. + + Instance map_protocol_aux_contractive : Contractive map_protocol_aux. + Proof. solve_proper_prepare. f_equiv. solve_proto_contractive. Qed. + Definition map_protocol := fixpoint map_protocol_aux. + Global Instance map_protocol_unfold n X : + ProtoUnfold (map_protocol n X) (map_protocol_aux map_protocol n X). + Proof. apply proto_unfold_eq, (fixpoint_unfold map_protocol_aux). Qed. + + Lemma sub_proof n x X : + ⊢ (map_protocol n ({[ x ]} ⊎ X) ⊑ + <? (l : loc)> MSG #l {{ llist IB l (map x) }} ; map_protocol n X)%proto. + Proof. Admitted. + +End map.