From deb6d9e522976541b4434417c936cf4d99b823b3 Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Tue, 28 Apr 2020 17:35:38 +0200 Subject: [PATCH] Large refactoring. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit - Protocols are no longer contractive in the message - New type `iMsg` for messages to avoid telescopes in protocols - Better rules for subprotocols that do not involve telescopes, but allow introduction and elimination of quantifiers and the payload - Better notations for protocols - Notation ⊑ for subprotocols - Make ⊑ except-0 so one can strip laters when proving a ⊑ - Restore recursive domain equation to push later inwards to support protocols that are not contractive in the mssage. - Proofmode support for easy manipulation of ⊑ --- theories/channel/channel.v | 191 ++--- theories/channel/proofmode.v | 247 +++--- theories/channel/proto.v | 1223 +++++++++++++++++------------ theories/channel/proto_model.v | 73 +- theories/examples/basics.v | 34 +- theories/examples/map.v | 4 +- theories/examples/sort.v | 8 +- theories/examples/sort_br_del.v | 4 +- theories/examples/sort_fg.v | 8 +- theories/logrel/examples/double.v | 17 +- theories/logrel/model.v | 4 +- theories/logrel/session_types.v | 25 +- theories/logrel/subtyping_rules.v | 220 ++---- 13 files changed, 1051 insertions(+), 1007 deletions(-) diff --git a/theories/channel/channel.v b/theories/channel/channel.v index 1beb11c..4e518e2 100644 --- a/theories/channel/channel.v +++ b/theories/channel/channel.v @@ -6,7 +6,7 @@ lock-protected buffers, and their primitive proof rules. Moreover: - It proves Actris's specifications of [send] and [recv] w.r.t. dependent separation protocols. -An encoding of the usual branching connectives [prot1 <{Q1}+{Q2}> prot2] and +An encoding of the usual choice connectives [prot1 <{Q1}+{Q2}> prot2] and [prot1 <{Q1}&{Q2}> prot2], inspired by session types, is also included in this file. @@ -86,6 +86,7 @@ Qed. (** * Definition of the mapsto connective *) Notation iProto Σ := (iProto Σ val). +Notation iMsg Σ := (iMsg Σ val). Definition iProto_mapsto_def `{!heapG Σ, !chanG Σ} (c : val) (p : iProto Σ) : iProp Σ := @@ -105,20 +106,20 @@ Instance: Params (@iProto_mapsto) 4 := {}. Notation "c ↣ p" := (iProto_mapsto c p) (at level 20, format "c ↣ p"). -Definition iProto_branch {Σ} (a : action) (P1 P2 : iProp Σ) +Definition iProto_choice {Σ} (a : action) (P1 P2 : iProp Σ) (p1 p2 : iProto Σ) : iProto Σ := - (<a> (b : bool), MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto. -Typeclasses Opaque iProto_branch. -Arguments iProto_branch {_} _ _%I _%I _%proto _%proto. -Instance: Params (@iProto_branch) 2 := {}. -Infix "<{ P1 }+{ P2 }>" := (iProto_branch Send P1 P2) (at level 85) : proto_scope. -Infix "<{ P1 }&{ P2 }>" := (iProto_branch Recv P1 P2) (at level 85) : proto_scope. -Infix "<+{ P2 }>" := (iProto_branch Send True P2) (at level 85) : proto_scope. -Infix "<&{ P2 }>" := (iProto_branch Recv True P2) (at level 85) : proto_scope. -Infix "<{ P1 }+>" := (iProto_branch Send P1 True) (at level 85) : proto_scope. -Infix "<{ P1 }&>" := (iProto_branch Recv P1 True) (at level 85) : proto_scope. -Infix "<+>" := (iProto_branch Send True True) (at level 85) : proto_scope. -Infix "<&>" := (iProto_branch Recv True True) (at level 85) : proto_scope. + (<a @ (b : bool)> MSG #b {{ if b then P1 else P2 }}; if b then p1 else p2)%proto. +Typeclasses Opaque iProto_choice. +Arguments iProto_choice {_} _ _%I _%I _%proto _%proto. +Instance: Params (@iProto_choice) 2 := {}. +Infix "<{ P1 }+{ P2 }>" := (iProto_choice Send P1 P2) (at level 85) : proto_scope. +Infix "<{ P1 }&{ P2 }>" := (iProto_choice Recv P1 P2) (at level 85) : proto_scope. +Infix "<+{ P2 }>" := (iProto_choice Send True P2) (at level 85) : proto_scope. +Infix "<&{ P2 }>" := (iProto_choice Recv True P2) (at level 85) : proto_scope. +Infix "<{ P1 }+>" := (iProto_choice Send P1 True) (at level 85) : proto_scope. +Infix "<{ P1 }&>" := (iProto_choice Recv P1 True) (at level 85) : proto_scope. +Infix "<+>" := (iProto_choice Send True True) (at level 85) : proto_scope. +Infix "<&>" := (iProto_choice Recv True True) (at level 85) : proto_scope. Section channel. Context `{!heapG Σ, !chanG Σ}. @@ -130,62 +131,47 @@ Section channel. Global Instance iProto_mapsto_proper c : Proper ((≡) ==> (≡)) (iProto_mapsto c). Proof. apply (ne_proper _). Qed. - Lemma iProto_mapsto_le c p1 p2 : c ↣ p1 -∗ â–· iProto_le p1 p2 -∗ c ↣ p2. + Lemma iProto_mapsto_le c p1 p2 : c ↣ p1 -∗ â–· (p1 ⊑ p2) -∗ c ↣ p2. Proof. rewrite iProto_mapsto_eq. iDestruct 1 as (γ s l r lk ->) "[Hlk H]". iIntros "Hle'". iExists γ, s, l, r, lk. iSplit; [done|]. iFrame "Hlk". by iApply (iProto_own_le with "H"). Qed. - Global Instance iProto_branch_contractive n a : - Proper (dist_later n ==> dist_later n ==> - dist_later n ==> dist_later n ==> dist n) (@iProto_branch Σ a). - Proof. - intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2. - apply iProto_message_contractive=> /= -[] //. - Qed. - Global Instance iProto_branch_ne n a : - Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_branch Σ a). - Proof. - intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2. - by apply iProto_message_ne=> /= -[]. - Qed. - Global Instance iProto_branch_proper a : - Proper ((≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) (@iProto_branch Σ a). - Proof. - intros p1 p1' Hp1 p2 p2' Hp2 P1 P1' HP1 P2 P2' HP2. - by apply iProto_message_proper=> /= -[]. - Qed. + Global Instance iProto_choice_contractive n a : + Proper (dist n ==> dist n ==> + dist_later n ==> dist_later n ==> dist n) (@iProto_choice Σ a). + Proof. solve_contractive. Qed. + Global Instance iProto_choice_ne n a : + Proper (dist n ==> dist n ==> dist n ==> dist n ==> dist n) (@iProto_choice Σ a). + Proof. solve_proper. Qed. + Global Instance iProto_choice_proper a : + Proper ((≡) ==> (≡) ==> (≡) ==> (≡) ==> (≡)) (@iProto_choice Σ a). + Proof. solve_proper. Qed. - Lemma iProto_dual_branch a P1 P2 p1 p2 : - iProto_dual (iProto_branch a P1 P2 p1 p2) - ≡ iProto_branch (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2). + Lemma iProto_dual_choice a P1 P2 p1 p2 : + iProto_dual (iProto_choice a P1 P2 p1 p2) + ≡ iProto_choice (action_dual a) P1 P2 (iProto_dual p1) (iProto_dual p2). Proof. - rewrite /iProto_branch iProto_dual_message /=. - by apply iProto_message_proper=> /= -[]. + rewrite /iProto_choice iProto_dual_message /= iMsg_dual_exist. + f_equiv; f_equiv=> -[]; by rewrite iMsg_dual_base. Qed. - Lemma iProto_app_branch a P1 P2 p1 p2 q : - (iProto_branch a P1 P2 p1 p2 <++> q)%proto - ≡ (iProto_branch a P1 P2 (p1 <++> q) (p2 <++> q))%proto. + Lemma iProto_app_choice a P1 P2 p1 p2 q : + (iProto_choice a P1 P2 p1 p2 <++> q)%proto + ≡ (iProto_choice a P1 P2 (p1 <++> q) (p2 <++> q))%proto. Proof. - rewrite /iProto_branch iProto_app_message. - by apply iProto_message_proper=> /= -[]. + rewrite /iProto_choice iProto_app_message /= iMsg_app_exist. + f_equiv; f_equiv=> -[]; by rewrite iMsg_app_base. Qed. - Lemma iProto_le_branch a P1 P2 p1 p2 p1' p2' : - â–· (P1 -∗ P1 ∗ iProto_le p1 p1') ∧ â–· (P2 -∗ P2 ∗ iProto_le p2 p2') -∗ - iProto_le (iProto_branch a P1 P2 p1 p2) (iProto_branch a P1 P2 p1' p2'). + Lemma iProto_le_choice a P1 P2 p1 p2 p1' p2' : + (P1 -∗ P1 ∗ â–· (p1 ⊑ p1')) ∧ (P2 -∗ P2 ∗ â–· (p2 ⊑ p2')) -∗ + iProto_choice a P1 P2 p1 p2 ⊑ iProto_choice a P1 P2 p1' p2'. Proof. - iIntros "H". rewrite /iProto_branch. destruct a. - - iApply iProto_le_send; iIntros "!>" (b) "HP /=". - iExists b; iSplit; [done|]. destruct b. - + iDestruct "H" as "[H _]". by iApply "H". - + iDestruct "H" as "[_ H]". by iApply "H". - - iApply iProto_le_recv; iIntros "!>" (b) "HP /=". - iExists b; iSplit; [done|]. destruct b. - + iDestruct "H" as "[H _]". by iApply "H". - + iDestruct "H" as "[_ H]". by iApply "H". + iIntros "H". rewrite /iProto_choice. destruct a; + iIntros (b) "HP"; iExists b; destruct b; + iDestruct ("H" with "HP") as "[$ ?]"; by iModIntro. Qed. (** ** Specifications of [send] and [recv] *) @@ -220,22 +206,24 @@ Section channel. wp_pures. iApply ("HΦ" with "Hc1"). Qed. - Lemma send_spec_packed {TT} c (pc : TT → val * iProp Σ * iProto Σ) (x : TT) : - {{{ c ↣ iProto_message Send pc ∗ (pc x).1.2 }}} - send c (pc x).1.1 - {{{ RET #(); c ↣ (pc x).2 }}}. + Lemma send_spec c v p : + {{{ c ↣ <!> MSG v; p }}} + send c v + {{{ RET #(); c ↣ p }}}. Proof. - rewrite iProto_mapsto_eq. iIntros (Φ) "[Hc Hpc] HΦ". wp_lam; wp_pures. + rewrite iProto_mapsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. wp_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". iDestruct "Hinv" as (vsl vsr) "(Hl & Hr & Hctx)". destruct s; simpl. - - iMod (iProto_send_l with "Hctx H Hpc") as "[Hctx H]". + - iMod (iProto_send_l with "Hctx H []") as "[Hctx H]". + { rewrite iMsg_base_eq /=; auto. } wp_apply (lsnoc_spec with "[$Hl //]"); iIntros "Hl". wp_apply (llength_spec with "[$Hr //]"); iIntros "Hr". wp_apply skipN_spec. wp_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. iIntros "_". iApply "HΦ". iExists γ, Left, l, r, lk. eauto 10 with iFrame. - - iMod (iProto_send_r with "Hctx H Hpc") as "[Hctx H]". + - iMod (iProto_send_r with "Hctx H []") as "[Hctx H]". + { rewrite iMsg_base_eq /=; auto. } wp_apply (lsnoc_spec with "[$Hr //]"); iIntros "Hr". wp_apply (llength_spec with "[$Hl //]"); iIntros "Hl". wp_apply skipN_spec. @@ -243,24 +231,16 @@ Section channel. iIntros "_". iApply "HΦ". iExists γ, Right, l, r, lk. eauto 10 with iFrame. Qed. - (** A version written without Texan triples that is more convenient to use - (via [iApply] in Coq. *) - Lemma send_spec {TT} Φ c v (pc : TT → val * iProp Σ * iProto Σ) : - c ↣ iProto_message Send pc -∗ - (∃.. x : TT, - ⌜ v = (pc x).1.1 ⌠∗ (pc x).1.2 ∗ â–· (c ↣ (pc x).2 -∗ Φ #())) -∗ - WP send c v {{ Φ }}. - Proof. - iIntros "Hc H". iDestruct (bi_texist_exist with "H") as (x ->) "[HP HΦ]". - by iApply (send_spec_packed with "[$]"). - Qed. - - Lemma try_recv_spec_packed {TT} c (pc : TT → val * iProp Σ * iProto Σ) : - {{{ c ↣ iProto_message Recv pc }}} + Lemma try_recv_spec {TT} c (v : TT → val) (P : TT → iProp Σ) (p : TT → iProto Σ) : + {{{ c ↣ <?.. x> MSG v x {{ â–· P x }}; p x }}} try_recv c - {{{ v, RET v; (⌜v = NONEV⌠∧ c ↣ iProto_message Recv pc) ∨ - (∃ x : TT, ⌜v = SOMEV ((pc x).1.1)⌠∗ c ↣ (pc x).2 ∗ (pc x).1.2) }}}. + {{{ w, RET w; (⌜w = NONEV⌠∗ c ↣ <?.. x> MSG v x {{ â–· P x }}; p x) ∨ + (∃.. x, ⌜w = SOMEV (v x)⌠∗ c ↣ p x ∗ P x) }}}. Proof. + assert (∀ w lp (m : TT → iMsg Σ), + (∃.. x, m x)%msg w lp ⊣⊢ (∃.. x, m x w lp)) as iMsg_texist. + { intros w lp m. clear v P p. rewrite /iMsg_texist iMsg_exist_eq. + induction TT as [|T TT IH]; simpl; [done|]. f_equiv=> x. apply IH. } rewrite iProto_mapsto_eq. iIntros (Φ) "Hc HΦ". wp_lam; wp_pures. iDestruct "Hc" as (γ s l r lk ->) "[#Hlk H]"; wp_pures. wp_apply (acquire_spec with "Hlk"); iIntros "[Hlkd Hinv]". @@ -272,10 +252,12 @@ Section channel. iExists γ, Left, l, r, lk. eauto 10 with iFrame. } wp_apply (lpop_spec with "Hr"); iIntros (v') "[% Hr]"; simplify_eq/=. iMod (iProto_recv_l with "Hctx H") as "H". wp_pures. - iMod "H" as (x ->) "(Hctx & H & Hpc)". + iMod "H" as (q) "(Hctx & H & Hm)". + rewrite iMsg_base_eq. iDestruct (iMsg_texist with "Hm") as (x <-) "[Hp HP]". wp_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. iIntros "_". wp_pures. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "Hpc". iExists γ, Left, l, r, lk. eauto 10 with iFrame. + iFrame "HP". iExists γ, Left, l, r, lk. iSplit; [done|]. iFrame "Hlk". + by iRewrite "Hp". - wp_apply (lisnil_spec with "Hl"); iIntros "Hl". destruct vsl as [|vl vsl]; wp_pures. { wp_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. @@ -283,43 +265,35 @@ Section channel. iExists γ, Right, l, r, lk. eauto 10 with iFrame. } wp_apply (lpop_spec with "Hl"); iIntros (v') "[% Hl]"; simplify_eq/=. iMod (iProto_recv_r with "Hctx H") as "H". wp_pures. - iMod "H" as (x ->) "(Hctx & H & Hpc)". + iMod "H" as (q) "(Hctx & H & Hm)". + rewrite iMsg_base_eq. iDestruct (iMsg_texist with "Hm") as (x <-) "[Hp HP]". wp_apply (release_spec with "[Hl Hr Hctx $Hlk $Hlkd]"); [by eauto with iFrame|]. iIntros "_". wp_pures. iApply "HΦ". iRight. iExists x. iSplit; [done|]. - iFrame "Hpc". iExists γ, Right, l, r, lk. eauto 10 with iFrame. + iFrame "HP". iExists γ, Right, l, r, lk. iSplit; [done|]. iFrame "Hlk". + by iRewrite "Hp". Qed. - Lemma recv_spec_packed {TT} c (pc : TT → val * iProp Σ * iProto Σ) : - {{{ c ↣ iProto_message Recv pc }}} + Lemma recv_spec {TT} c (v : TT → val) (P : TT → iProp Σ) (p : TT → iProto Σ) : + {{{ c ↣ <?.. x> MSG v x {{ â–· P x }}; p x }}} recv c - {{{ x, RET (pc x).1.1; c ↣ (pc x).2 ∗ (pc x).1.2 }}}. + {{{ x, RET v x; c ↣ p x ∗ P x }}}. Proof. iIntros (Φ) "Hc HΦ". iLöb as "IH". wp_lam. - wp_apply (try_recv_spec_packed with "Hc"); iIntros (v) "[[-> H]|H]". + wp_apply (try_recv_spec with "Hc"); iIntros (w) "[[-> H]|H]". { wp_pures. by iApply ("IH" with "[$]"). } - iDestruct "H" as (x ->) "[Hc Hpc]". wp_pures. iApply "HΦ". iFrame. - Qed. - - (** A version written without Texan triples that is more convenient to use - (via [iApply] in Coq. *) - Lemma recv_spec {TT} Φ c (pc : TT → val * iProp Σ * iProto Σ) : - c ↣ iProto_message Recv pc -∗ - â–· (∀.. x : TT, c ↣ (pc x).2 -∗ (pc x).1.2 -∗ Φ (pc x).1.1) -∗ - WP recv c {{ Φ }}. - Proof. - iIntros "Hc H". iApply (recv_spec_packed with "[$]"). - iIntros "!>" (x) "[Hc HP]". iDestruct (bi_tforall_forall with "H") as "H". - iApply ("H" with "[$] [$]"). + iDestruct "H" as (x ->) "[Hc HP]". wp_pures. iApply "HΦ". iFrame. Qed. - (** ** Specifications for branching *) + (** ** Specifications for choice *) Lemma select_spec c (b : bool) P1 P2 p1 p2 : {{{ c ↣ (p1 <{P1}+{P2}> p2) ∗ if b then P1 else P2 }}} send c #b {{{ RET #(); c ↣ (if b then p1 else p2) }}}. Proof. - rewrite /iProto_branch. iIntros (Φ) "[Hc HP] HΦ". - iApply (send_spec with "Hc"); simpl; eauto with iFrame. + rewrite /iProto_choice. iIntros (Φ) "[Hc HP] HΦ". + iApply (send_spec with "[Hc HP] HΦ"). + iApply (iProto_mapsto_le with "Hc"). + iIntros "!>". iExists b. by iFrame "HP". Qed. Lemma branch_spec c P1 P2 p1 p2 : @@ -327,8 +301,13 @@ Section channel. recv c {{{ b, RET #b; c ↣ (if b : bool then p1 else p2) ∗ if b then P1 else P2 }}}. Proof. - rewrite /iProto_branch. iIntros (Φ) "Hc HΦ". - iApply (recv_spec with "Hc"); simpl. - iIntros "!>" (b) "Hc HP". iApply "HΦ". iFrame. + rewrite /iProto_choice. iIntros (Φ) "Hc HΦ". + iApply (recv_spec _ (tele_app _) + (tele_app (TT:=[tele _ : bool]) (λ b, if b then P1 else P2))%I + (tele_app _) with "[Hc]"). + { iApply (iProto_mapsto_le with "Hc"). + iIntros "!> /=" (b) "HP". iExists b. by iSplitL. } + rewrite -bi_tforall_forall. + iIntros "!>" (x) "[Hc H]". iApply "HΦ". iFrame. Qed. End channel. diff --git a/theories/channel/proofmode.v b/theories/channel/proofmode.v index 7652a62..90e2817 100644 --- a/theories/channel/proofmode.v +++ b/theories/channel/proofmode.v @@ -12,22 +12,22 @@ From iris.proofmode Require Export tactics. From actris Require Export channel. From iris.proofmode Require Import coq_tactics reduction spec_patterns. -(** * Tactics for proving contractiveness of protocols *) -Ltac f_proto_contractive := +-(** * Tactics for proving contractiveness of protocols *) +Ltac f_dist_le := match goal with - | _ => apply iProto_branch_contractive - | _ => apply iProto_message_contractive; simpl; intros; [reflexivity|..] | H : _ ≡{?n}≡ _ |- _ ≡{?n'}≡ _ => apply (dist_le n); [apply H|lia] - end; - try match goal with - | |- @dist_later ?A _ ?n ?x ?y => - destruct n as [|n]; simpl in *; [exact Logic.I|change (@dist A _ n x y)] end. Ltac solve_proto_contractive := - solve_proper_core ltac:(fun _ => first [f_contractive | f_proto_contractive | f_equiv]). + solve_proper_core ltac:(fun _ => + first [f_contractive; simpl in * | f_equiv | f_dist_le]). (** * Normalization of protocols *) +Class MsgTele {Σ} {TT : tele} (m : iMsg Σ) + (tv : TT -t> val) (tP : TT -t> iProp Σ) (tp : TT -t> iProto Σ) := + msg_tele : m ≡ (∃.. x, MSG tele_app tv x {{ tele_app tP x }}; tele_app tp x)%msg. +Hint Mode MsgTele ! - ! - - - : typeclass_instances. + Class ActionDualIf (d : bool) (a1 a2 : action) := dual_action_if : a2 = if d then action_dual a1 else a1. Hint Mode ActionDualIf ! ! - : typeclass_instances. @@ -39,38 +39,47 @@ Instance action_dual_if_true_recv : ActionDualIf true Recv Send := eq_refl. Class ProtoNormalize {Σ} (d : bool) (p : iProto Σ) (pas : list (bool * iProto Σ)) (q : iProto Σ) := proto_normalize : - ⊢ iProto_le (iProto_dual_if d p <++> - foldr (iProto_app ∘ curry iProto_dual_if) END pas)%proto q. + ⊢ iProto_dual_if d p <++> + foldr (iProto_app ∘ curry iProto_dual_if) END%proto pas ⊑ q. Hint Mode ProtoNormalize ! ! ! ! - : typeclass_instances. Arguments ProtoNormalize {_} _ _%proto _%proto _%proto. -Class ProtoContNormalize {Σ TT} (d : bool) (pc : TT → val * iProp Σ * iProto Σ) - (pas : list (bool * iProto Σ)) (qc : TT → val * iProp Σ * iProto Σ) := - proto_cont_normalize x : - (pc x).1.1 = (qc x).1.1 ∧ - (pc x).1.2 ≡ (qc x).1.2 ∧ - ProtoNormalize d ((pc x).2) pas ((qc x).2). -Hint Mode ProtoContNormalize ! ! ! ! ! - : typeclass_instances. - Notation ProtoUnfold p1 p2 := (∀ d pas q, ProtoNormalize d p2 pas q → ProtoNormalize d p1 pas q). +Class MsgNormalize {Σ} (d : bool) (m1 : iMsg Σ) + (pas : list (bool * iProto Σ)) (m2 : iMsg Σ) := + msg_normalize a : + ProtoNormalize d (<a> m1) pas (<(if d then action_dual a else a)> m2). +Hint Mode MsgNormalize ! ! ! ! - : typeclass_instances. +Arguments MsgNormalize {_} _ _%msg _%msg _%msg. + Section classes. Context `{!chanG Σ, !heapG Σ}. - Implicit Types p : iProto Σ. Implicit Types TT : tele. + Implicit Types p : iProto Σ. + Implicit Types m : iMsg Σ. + Implicit Types P : iProp Σ. + + Global Instance msg_tele_base v P p : + MsgTele (TT:=TeleO) (MSG v {{ P }}; p) v P p. + Proof. done. Qed. + Global Instance msg_tele_exist {A} {TT : A → tele} (m : A → iMsg Σ) tv tP tp : + (∀ x, MsgTele (TT:=TT x) (m x) (tv x) (tP x) (tp x)) → + MsgTele (TT:=TeleS TT) (∃ x, m x) tv tP tp. + Proof. intros Hm. rewrite /MsgTele /=. f_equiv=> x. apply Hm. Qed. Lemma proto_unfold_eq p1 p2 : p1 ≡ p2 → ProtoUnfold p1 p2. Proof. rewrite /ProtoNormalize=> Hp d pas q. by rewrite Hp. Qed. Global Instance proto_normalize_done p : ProtoNormalize false p [] p | 0. - Proof. rewrite /ProtoNormalize /= right_id. iApply iProto_le_refl. Qed. + Proof. rewrite /ProtoNormalize /= right_id. auto. Qed. Global Instance proto_normalize_done_dual p : ProtoNormalize true p [] (iProto_dual p) | 0. - Proof. rewrite /ProtoNormalize /= right_id. iApply iProto_le_refl. Qed. + Proof. rewrite /ProtoNormalize /= right_id. auto. Qed. Global Instance proto_normalize_done_dual_end : ProtoNormalize (Σ:=Σ) true END [] END | 0. - Proof. rewrite /ProtoNormalize /= right_id iProto_dual_end. iApply iProto_le_refl. Qed. + Proof. rewrite /ProtoNormalize /= right_id iProto_dual_end. auto. Qed. Global Instance proto_normalize_dual d p pas q : ProtoNormalize (negb d) p pas q → @@ -96,101 +105,75 @@ Section classes. Global Instance proto_normalize_app_r d p1 p2 pas q : ProtoNormalize d p2 pas q → ProtoNormalize false p1 ((d,p2) :: pas) (p1 <++> q) | 0. - Proof. - rewrite /ProtoNormalize /= => H. - iApply iProto_le_app; [iApply iProto_le_refl|done]. - Qed. + Proof. rewrite /ProtoNormalize /= => H. by iApply iProto_le_app. Qed. Global Instance proto_normalize_app_r_dual d p1 p2 pas q : ProtoNormalize d p2 pas q → ProtoNormalize true p1 ((d,p2) :: pas) (iProto_dual p1 <++> q) | 0. - Proof. - rewrite /ProtoNormalize /= => H. - iApply iProto_le_app; [iApply iProto_le_refl|done]. - Qed. + Proof. rewrite /ProtoNormalize /= => H. by iApply iProto_le_app. Qed. - Global Instance proto_cont_normalize_O d v P p q pas : + Global Instance msg_normalize_base d v P p q pas : ProtoNormalize d p pas q → - ProtoContNormalize d (tele_app (TT:=TeleO) (v,P,p)) pas - (tele_app (TT:=TeleO) (v,P,q)). - Proof. rewrite /ProtoContNormalize=> ?. by apply tforall_forall. Qed. - - Global Instance proto_cont_normalize_S {A} {TT : A → tele} d - (pc qc : ∀ a, TT a -t> val * iProp Σ * iProto Σ) pas : - (∀ a, ProtoContNormalize d (tele_app (pc a)) pas (tele_app (qc a))) → - ProtoContNormalize d (tele_app (TT:=TeleS TT) pc) pas (tele_app (TT:=TeleS TT) qc). + MsgNormalize d (MSG v {{ P }}; p) pas (MSG v {{ P }}; q). Proof. - rewrite /ProtoContNormalize=> H. apply tforall_forall=> /= x. - apply tforall_forall, (H x). + rewrite /MsgNormalize /ProtoNormalize=> H a. + iApply iProto_le_trans; [|by iApply iProto_le_base]. + destruct d; by rewrite /= ?iProto_dual_message ?iMsg_dual_base + iProto_app_message iMsg_app_base. Qed. - Global Instance proto_normalize_message {TT} d a1 a2 - (pc qc : TT → val * iProp Σ * iProto Σ) pas : - ActionDualIf d a1 a2 → - ProtoContNormalize d pc pas qc → - ProtoNormalize d (iProto_message a1 pc) pas - (iProto_message a2 qc). + Global Instance msg_normalize_exist {A} d (m1 m2 : A → iMsg Σ) pas : + (∀ x, MsgNormalize d (m1 x) pas (m2 x)) → + MsgNormalize d (∃ x, m1 x) pas (∃ x, m2 x). Proof. - rewrite /ActionDualIf /ProtoContNormalize /ProtoNormalize=> -> H. - destruct d; simpl. - - rewrite iProto_dual_message iProto_app_message. destruct a1; simpl. - + iApply iProto_le_recv; iIntros "!>" (x) "/= Hpc". iExists x. - destruct (H x) as (-> & -> & Hle). iSplit; [done|]. by iFrame "Hpc". - + iApply iProto_le_send; iIntros "!>" (x) "/= Hpc". iExists x. - destruct (H x) as (-> & -> & Hle). iSplit; [done|]. by iFrame "Hpc". - - rewrite iProto_app_message. destruct a1; simpl. - + iApply iProto_le_send; iIntros "!>" (x) "/= Hpc". iExists x. - destruct (H x) as (-> & -> & Hle). iSplit; [done|]. by iFrame "Hpc". - + iApply iProto_le_recv; iIntros "!>" (x) "/= Hpc". iExists x. - destruct (H x) as (-> & -> & Hle). iSplit; [done|]. by iFrame "Hpc". + rewrite /MsgNormalize /ProtoNormalize=> H a. + destruct d, a; simpl in *; rewrite ?iProto_dual_message ?iMsg_dual_exist + ?iProto_app_message ?iMsg_app_exist /=; iIntros (x); iExists x; first + [move: (H x Send); by rewrite ?iProto_dual_message ?iProto_app_message + |move: (H x Recv); by rewrite ?iProto_dual_message ?iProto_app_message]. Qed. - Global Instance proto_normalize_swap {TT1 TT2} d a1 - (pc1 : TT1 → val * iProp Σ * iProto Σ) - (vP1 : TT1 -t> val * iProp Σ) (vP2 : TT2 -t> val * iProp Σ) - (pc12 : TT1 -t> TT2 -t> iProto Σ) - (pc2 : TT2 -t> val * iProp Σ * iProto Σ) pas : - ActionDualIf d a1 Recv → - ProtoContNormalize d pc1 pas (λ.. x1, - (tele_app vP1 x1, iProto_message Send (λ.. x2, - (tele_app vP2 x2, tele_app (tele_app pc12 x1) x2)))) → - (∀.. x2, TCEq (tele_app vP2 x2, iProto_message Recv (λ.. x1, - (tele_app vP1 x1, tele_app (tele_app pc12 x1) x2))) - (tele_app pc2 x2)) → - ProtoNormalize d (iProto_message a1 pc1) pas - (iProto_message Send (tele_app pc2)). + Global Instance proto_normalize_message d a1 a2 m1 m2 pas : + ActionDualIf d a1 a2 → + MsgNormalize d m1 pas m2 → + ProtoNormalize d (<a1> m1) pas (<a2> m2). + Proof. by rewrite /ActionDualIf /MsgNormalize /ProtoNormalize=> ->. Qed. + + Global Instance proto_normalize_swap {TT1 TT2} d a m m' + (tv1 : TT1 -t> val) (tP1 : TT1 -t> iProp Σ) (tm1 : TT1 -t> iMsg Σ) + (tv2 : TT2 -t> val) (tP2 : TT2 -t> iProp Σ) + (tp : TT1 -t> TT2 -t> iProto Σ) pas : + ActionDualIf d a Recv → + MsgNormalize d m pas m' → + MsgTele m' tv1 tP1 (tele_bind (λ.. x1, <!> tele_app tm1 x1))%proto → + (∀.. x1, MsgTele (tele_app tm1 x1) tv2 tP2 (tele_app tp x1)) → + ProtoNormalize d (<a> m) pas (<!.. x2> MSG tele_app tv2 x2 {{ tele_app tP2 x2 }}; + <?.. x1> MSG tele_app tv1 x1 {{ tele_app tP1 x1 }}; + tele_app (tele_app tp x1) x2). Proof. - (** TODO: This proof contains twice the same subproof. Refactor. *) - rewrite /ActionDualIf /ProtoContNormalize /ProtoNormalize. - rewrite tforall_forall=> ? Hpc1 Hpc2. destruct d, a1; simplify_eq/=. - - rewrite iProto_dual_message iProto_app_message /=. - iApply iProto_le_swap. iIntros "!>" (x1 x2) "/= Hpc1 Hpc2". - move: (Hpc1 x1); rewrite {Hpc1} !tele_app_bind /=; intros (->&->&Hpc). - move: (Hpc2 x2); rewrite {Hpc2} TCEq_eq; intros Hpc2. - iExists TT2, TT1, (λ.. x2, (tele_app vP2 x2, tele_app (tele_app pc12 x1) x2)), - (λ.. x1, (tele_app vP1 x1, tele_app (tele_app pc12 x1) x2)), x2, x1. - rewrite /= !tele_app_bind /= -!Hpc2 /=. do 2 (iSplit; [done|]). iFrame. - iSplitR; [done|]. iSplitR; [iApply iProto_le_refl|]. done. - - rewrite iProto_app_message /=. - iApply iProto_le_swap. iIntros "!>" (x1 x2) "/= Hpc1 Hpc2". - move: (Hpc1 x1); rewrite {Hpc1} !tele_app_bind /=; intros (->&->&Hpc). - move: (Hpc2 x2); rewrite {Hpc2} TCEq_eq; intros Hpc2. - iExists TT2, TT1, (λ.. x2, (tele_app vP2 x2, tele_app (tele_app pc12 x1) x2)), - (λ.. x1, (tele_app vP1 x1, tele_app (tele_app pc12 x1) x2)), x2, x1. - rewrite /= !tele_app_bind /= -!Hpc2 /=. do 2 (iSplit; [done|]). iFrame. - iSplitR; [done|]. iSplitR; [iApply iProto_le_refl|]. done. + rewrite /ActionDualIf /MsgNormalize /ProtoNormalize /MsgTele. + rewrite tforall_forall=> Ha Hm Hm' Hm''. + iApply iProto_le_trans; [iApply Hm|]. rewrite Hm' -Ha. clear Ha Hm Hm'. + iApply iProto_le_texist_elim_l; iIntros (x1). + iApply iProto_le_texist_elim_r; iIntros (x2). + rewrite !tele_app_bind Hm'' {Hm''}. + iApply iProto_le_trans; + [iApply iProto_le_base; iApply (iProto_le_texist_intro_l _ x2)|]. + iApply iProto_le_trans; + [|iApply iProto_le_base; iApply (iProto_le_texist_intro_r _ x1)]; simpl. + iApply iProto_le_base_swap. Qed. - Global Instance proto_normalize_branch d a1 a2 P1 P2 p1 p2 q1 q2 pas : + Global Instance proto_normalize_choice d a1 a2 P1 P2 p1 p2 q1 q2 pas : ActionDualIf d a1 a2 → ProtoNormalize d p1 pas q1 → ProtoNormalize d p2 pas q2 → - ProtoNormalize d (iProto_branch a1 P1 P2 p1 p2) pas - (iProto_branch a2 P1 P2 q1 q2). + ProtoNormalize d (iProto_choice a1 P1 P2 p1 p2) pas + (iProto_choice a2 P1 P2 q1 q2). Proof. rewrite /ActionDualIf /ProtoNormalize=> -> H1 H2. destruct d; simpl. - - rewrite !iProto_dual_branch !iProto_app_branch. - iApply iProto_le_branch; iSplit; by iIntros "!> $". - - rewrite !iProto_app_branch. iApply iProto_le_branch; iSplit; by iIntros "!> $". + - rewrite !iProto_dual_choice !iProto_app_choice. + iApply iProto_le_choice; iSplit; by iIntros "$". + - rewrite !iProto_app_choice. iApply iProto_le_choice; iSplit; by iIntros "$". Qed. (** Automatically perform normalization of protocols in the proof mode when @@ -215,27 +198,35 @@ End classes. (** * Symbolic execution tactics *) (* TODO: Maybe strip laters from other hypotheses in the future? *) -Lemma tac_wp_recv `{!chanG Σ, !heapG Σ} {TT : tele} Δ i j K - c p (pc : TT → val * iProp Σ * iProto Σ) Φ : +Lemma tac_wp_recv `{!chanG Σ, !heapG Σ} {TT : tele} Δ i j K c p m tv tP tP' tp Φ : envs_lookup i Δ = Some (false, c ↣ p)%I → - ProtoNormalize false p [] (iProto_message Recv pc) → + ProtoNormalize false p [] (<?> m) → + MsgTele m tv tP tp → + (∀.. x, MaybeIntoLaterN false 1 (tele_app tP x) (tele_app tP' x)) → let Δ' := envs_delete false i false Δ in (∀.. x : TT, match envs_app false - (Esnoc (Esnoc Enil j ((pc x).1.2)) i (c ↣ (pc x).2)) Δ' with - | Some Δ'' => envs_entails Δ'' (WP fill K (of_val (pc x).1.1) {{ Φ }}) + (Esnoc (Esnoc Enil j (tele_app tP' x)) i (c ↣ tele_app tp x)) Δ' with + | Some Δ'' => envs_entails Δ'' (WP fill K (of_val (tele_app tv x)) {{ Φ }}) | None => False end) → envs_entails Δ (WP fill K (recv c) {{ Φ }}). Proof. - rewrite envs_entails_eq /ProtoNormalize /= tforall_forall right_id=> ? Hp HΦ. - rewrite envs_lookup_sound //; simpl. - rewrite (iProto_mapsto_le _ _ (iProto_message Recv pc)) -bi.later_intro -Hp left_id. - rewrite -wp_bind. eapply bi.wand_apply; [by eapply recv_spec|f_equiv]. - rewrite -bi.later_intro bi_tforall_forall; apply bi.forall_intro=> x. + rewrite envs_entails_eq /ProtoNormalize /MsgTele /MaybeIntoLaterN /=. + rewrite !tforall_forall right_id. + intros ? Hp Hm HP HΦ. rewrite envs_lookup_sound //; simpl. + assert (c ↣ p ⊢ c ↣ <?.. x> + MSG tele_app tv x {{ â–· tele_app tP' x }}; tele_app tp x) as ->. + { iIntros "Hc". iApply (iProto_mapsto_le with "Hc"). iIntros "!>". + iApply iProto_le_trans; [iApply Hp|rewrite Hm]. + iApply iProto_le_texist_elim_l; iIntros (x). + iApply iProto_le_trans; [|iApply (iProto_le_texist_intro_r _ x)]; simpl. + iIntros "H". by iDestruct (HP with "H") as "$". } + rewrite -wp_bind. eapply bi.wand_apply; + [by eapply (recv_spec _ (tele_app tv) (tele_app tP') (tele_app tp))|f_equiv]. + rewrite -bi.later_intro; apply bi.forall_intro=> x. specialize (HΦ x). destruct (envs_app _ _) as [Δ'|] eqn:HΔ'=> //. - rewrite envs_app_sound //; simpl. - by rewrite right_id HΦ bi.wand_curry. + rewrite envs_app_sound //; simpl. by rewrite right_id HΦ. Qed. Tactic Notation "wp_recv_core" tactic3(tac_intros) "as" tactic3(tac) := @@ -251,6 +242,8 @@ Tactic Notation "wp_recv_core" tactic3(tac_intros) "as" tactic3(tac) := |fail 1 "wp_recv: cannot find 'recv' in" e]; [solve_mapsto () |iSolveTC || fail 1 "wp_send: protocol not of the shape <?>" + |iSolveTC || fail 1 "wp_send: cannot convert to telescope" + |iSolveTC |pm_reduce; simpl; tac_intros; tac Hnew; wp_finish] @@ -294,18 +287,18 @@ Tactic Notation "wp_recv" "(" simple_intropattern_list(xs) ")" "as" "(" simple_i simple_intropattern(x8) ")" constr(pat) := wp_recv_core (intros xs) as (fun H => iDestructHyp H as ( x1 x2 x3 x4 x5 x6 x7 x8 ) pat). -Lemma tac_wp_send `{!chanG Σ, !heapG Σ} {TT : tele} Δ neg i js K - c v p (pc : TT → val * iProp Σ * iProto Σ) Φ : +Lemma tac_wp_send `{!chanG Σ, !heapG Σ} {TT : tele} Δ neg i js K c v p m tv tP tp Φ : envs_lookup i Δ = Some (false, c ↣ p)%I → - ProtoNormalize false p [] (iProto_message Send pc) → + ProtoNormalize false p [] (<!> m) → + MsgTele m tv tP tp → let Δ' := envs_delete false i false Δ in (∃.. x : TT, match envs_split (if neg is true then Right else Left) js Δ' with | Some (Δ1,Δ2) => - match envs_app false (Esnoc Enil i (c ↣ (pc x).2)) Δ2 with + match envs_app false (Esnoc Enil i (c ↣ tele_app tp x)) Δ2 with | Some Δ2' => - v = (pc x).1.1 ∧ - envs_entails Δ1 (pc x).1.2 ∧ + v = tele_app tv x ∧ + envs_entails Δ1 (tele_app tP x) ∧ envs_entails Δ2' (WP fill K (of_val #()) {{ Φ }}) | None => False end @@ -313,16 +306,19 @@ Lemma tac_wp_send `{!chanG Σ, !heapG Σ} {TT : tele} Δ neg i js K end) → envs_entails Δ (WP fill K (send c v) {{ Φ }}). Proof. - rewrite envs_entails_eq /ProtoNormalize /= right_id texist_exist=> ? Hp [x HΦ]. - rewrite envs_lookup_sound //; simpl. - rewrite (iProto_mapsto_le _ _ (iProto_message Send pc)) -bi.later_intro -Hp left_id. - rewrite -wp_bind. eapply bi.wand_apply; [by eapply send_spec|f_equiv]. - rewrite bi_texist_exist -(bi.exist_intro x). + rewrite envs_entails_eq /ProtoNormalize /MsgTele /= right_id texist_exist. + intros ? Hp Hm [x HΦ]. rewrite envs_lookup_sound //; simpl. destruct (envs_split _ _ _) as [[Δ1 Δ2]|] eqn:? => //. destruct (envs_app _ _ _) as [Δ2'|] eqn:? => //. rewrite envs_split_sound //; rewrite (envs_app_sound Δ2) //; simpl. - destruct HΦ as (-> & -> & ->). rewrite bi.pure_True // left_id. - by rewrite -bi.later_intro right_id. + destruct HΦ as (-> & -> & ->). rewrite right_id assoc. + assert (c ↣ p ∗ tele_app tP x ⊢ + c ↣ <!> MSG tele_app tv x; tele_app tp x) as ->. + { iIntros "[Hc Hm]". iApply (iProto_mapsto_le with "Hc"); iIntros "!>". + iApply iProto_le_trans; [iApply Hp|]. rewrite Hm. + iApply iProto_le_trans; [iApply iProto_le_texist_intro_l|]. by iFrame. } + eapply bi.wand_apply; [rewrite -wp_bind; by eapply send_spec|]. + by rewrite -bi.later_intro. Qed. Tactic Notation "wp_send_core" tactic3(tac_exist) "with" constr(pat) := @@ -348,6 +344,7 @@ Tactic Notation "wp_send_core" tactic3(tac_exist) "with" constr(pat) := |fail 1 "wp_send: cannot find 'send' in" e]; [solve_mapsto () |iSolveTC || fail 1 "wp_send: protocol not of the shape <!>" + |iSolveTC || fail 1 "wp_send: cannot convert to telescope" |pm_reduce; simpl; tac_exist; repeat lazymatch goal with | |- ∃ _, _ => eexists _ @@ -437,7 +434,7 @@ Tactic Notation "wp_branch" "as" "%" simple_intropattern(pat1) "|" constr(pat2) Tactic Notation "wp_branch" "as" constr(pat1) "|" "%" simple_intropattern(pat2) := wp_branch_core as (fun H => iDestructHyp H as pat1) (fun H => iPure H as pat2). Tactic Notation "wp_branch" "as" "%" simple_intropattern(pat1) "|" "%" simple_intropattern(pat2) := - wp_branch_core as (fun H => iPure H as pat1) (fun H => iPure H as pat2). + wp_branch_core as (fun H => iPure H as pat1) (fun H => iPure H as pat2). Tactic Notation "wp_branch" := wp_branch as %_ | %_. Lemma tac_wp_select `{!chanG Σ, !heapG Σ} Δ neg i js K diff --git a/theories/channel/proto.v b/theories/channel/proto.v index ca61dcf..8dc4451 100644 --- a/theories/channel/proto.v +++ b/theories/channel/proto.v @@ -24,7 +24,6 @@ notions, such as contractiveness and non-expansiveness, after which the specifications of the message-passing primitives are defined in terms of the protocol connectives. *) From iris.algebra Require Import excl_auth. -From iris.bi Require Import telescopes. From iris.proofmode Require Import tactics. From iris.base_logic Require Export lib.iprop. From iris.base_logic Require Import lib.own. @@ -48,6 +47,81 @@ Proof. solve_inG. Qed. Definition iProto Σ V := proto V (iPropO Σ) (iPropO Σ). Delimit Scope proto_scope with proto. Bind Scope proto_scope with iProto. +Local Open Scope proto. + +(** * Messages *) +Section iMsg. + Set Primitive Projections. + Record iMsg Σ V := IMsg { iMsg_car :> V → laterO (iProto Σ V) -n> iPropO Σ }. +End iMsg. +Arguments IMsg {_ _} _. +Arguments iMsg_car {_ _} _. + +Delimit Scope msg_scope with msg. +Bind Scope msg_scope with iMsg. +Instance iMsg_inhabited {Σ V} : Inhabited (iMsg Σ V) := populate (IMsg inhabitant). + +Section imsg_ofe. + Context {Σ : gFunctors} {V : Type}. + + Instance iMsg_equiv : Equiv (iMsg Σ V) := λ m1 m2, + ∀ w p, iMsg_car m1 w p ≡ iMsg_car m2 w p. + Instance iMsg_dist : Dist (iMsg Σ V) := λ n m1 m2, + ∀ w p, iMsg_car m1 w p ≡{n}≡ iMsg_car m2 w p. + + Lemma iMsg_ofe_mixin : OfeMixin (iMsg Σ V). + Proof. by apply (iso_ofe_mixin (iMsg_car : _ → V -d> _ -n> _)). Qed. + Canonical Structure iMsgO := OfeT (iMsg Σ V) iMsg_ofe_mixin. + + Global Instance iMsg_cofe : Cofe iMsgO. + Proof. by apply (iso_cofe (IMsg : (V -d> _ -n> _) → _) iMsg_car). Qed. + + Global Instance iMsg_car_ne n : Proper (dist n ==> (=) ==> dist n) iMsg_car. + Proof. by intros m m' ? w ? <- p. Qed. + Global Instance iMsg_car_proper : Proper ((≡) ==> (=) ==> (≡)) iMsg_car. + Proof. by intros m m' ? w ? <- p. Qed. + + Global Instance IMsg_ne n : Proper (pointwise_relation _ (dist n) ==> dist n) IMsg. + Proof. by intros ???. Qed. + Global Instance IMsg_proper : Proper (pointwise_relation _ (≡) ==> (≡)) IMsg. + Proof. by intros ???. Qed. +End imsg_ofe. + +Program Definition iMsg_base_def {Σ V} + (v : V) (P : iProp Σ) (p : iProto Σ V) : iMsg Σ V := + IMsg (λ v', λne p', ⌜ v = v' ⌠∗ Next p ≡ p' ∗ P)%I. +Next Obligation. solve_proper. Qed. +Definition iMsg_base_aux : seal (@iMsg_base_def). by eexists. Qed. +Definition iMsg_base := iMsg_base_aux.(unseal). +Definition iMsg_base_eq : @iMsg_base = @iMsg_base_def := iMsg_base_aux.(seal_eq). +Arguments iMsg_base {_ _} _%V _%I _%proto. +Instance: Params (@iMsg_base) 3 := {}. + +Program Definition iMsg_exist_def {Σ V A} (m : A → iMsg Σ V) : iMsg Σ V := + IMsg (λ v', λne p', ∃ x, m x v' p')%I. +Next Obligation. solve_proper. Qed. +Definition iMsg_exist_aux : seal (@iMsg_exist_def). by eexists. Qed. +Definition iMsg_exist := iMsg_exist_aux.(unseal). +Definition iMsg_exist_eq : @iMsg_exist = @iMsg_exist_def := iMsg_exist_aux.(seal_eq). +Arguments iMsg_exist {_ _ _} _%msg. +Instance: Params (@iMsg_exist) 3 := {}. + +Definition iMsg_texist {Σ V} {TT : tele} (m : TT → iMsg Σ V) : iMsg Σ V := + tele_fold (@iMsg_exist Σ V) (λ x, x) (tele_bind m). +Arguments iMsg_texist {_ _ !_} _%msg /. + +Notation "'MSG' v {{ P } } ; p" := (iMsg_base v P p) + (at level 200, v at level 20, right associativity, + format "MSG v {{ P } } ; p") : msg_scope. +Notation "'MSG' v ; p" := (iMsg_base v True p) + (at level 200, v at level 20, right associativity, + format "MSG v ; p") : msg_scope. +Notation "∃ x .. y , m" := + (iMsg_exist (λ x, .. (iMsg_exist (λ y, m)) ..)%msg) : msg_scope. +Notation "'∃..' x .. y , m" := + (iMsg_texist (λ x, .. (iMsg_texist (λ y, m)) .. )%msg) + (at level 200, x binder, y binder, right associativity, + format "∃.. x .. y , m") : msg_scope. (** * Operators *) Definition iProto_end_def {Σ V} : iProto Σ V := proto_end. @@ -56,119 +130,64 @@ Definition iProto_end := iProto_end_aux.(unseal). Definition iProto_end_eq : @iProto_end = @iProto_end_def := iProto_end_aux.(seal_eq). Arguments iProto_end {_ _}. -Program Definition iProto_message_def {Σ V} {TT : tele} (a : action) - (pc : TT → V * iProp Σ * iProto Σ V) : iProto Σ V := - proto_message a (λ v, λne p', ∃ x : TT, - ⌜ v = (pc x).1.1 ⌠∗ - (pc x).1.2 ∗ - p' ≡ (pc x).2)%I. -Next Obligation. solve_proper. Qed. +Definition iProto_message_def {Σ V} (a : action) (m : iMsg Σ V) : iProto Σ V := + proto_message a m. Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed. Definition iProto_message := iProto_message_aux.(unseal). Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq). -Arguments iProto_message {_ _ _} _ _%proto. -Instance: Params (@iProto_message) 4 := {}. - -Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" := - (iProto_message - a - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..)) - (at level 20, a at level 10, x1 binder, xn binder, - v at level 20, P, p at level 200) : proto_scope. -Notation "< a > x1 .. xn , 'MSG' v ; p" := - (iProto_message - a - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..)) - (at level 20, a at level 10, x1 binder, xn binder, - v at level 20, p at level 200) : proto_scope. -Notation "< a > 'MSG' v {{ P } } ; p" := - (iProto_message - a - (tele_app (TT:=TeleO) (v%V,P%I,p%proto))) - (at level 20, a at level 10, v at level 20, P, p at level 200) : proto_scope. -Notation "< a > 'MSG' v ; p" := - (iProto_message - a - (tele_app (TT:=TeleO) (v%V,True%I,p%proto))) - (at level 20, a at level 10, v at level 20, p at level 200) : proto_scope. - -Notation "<!> x1 .. xn , 'MSG' v {{ P } } ; p" := - (iProto_message - Send - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..)) - (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope. -Notation "<!> x1 .. xn , 'MSG' v ; p" := - (iProto_message - Send - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..)) - (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope. -Notation "<!> 'MSG' v {{ P } } ; p" := - (iProto_message - (TT:=TeleO) - Send - (tele_app (TT:=TeleO) (v%V,P%I,p%proto))) - (at level 20, v at level 20, P, p at level 200) : proto_scope. -Notation "<!> 'MSG' v ; p" := - (iProto_message - (TT:=TeleO) - Send - (tele_app (TT:=TeleO) (v%V,True%I,p%proto))) - (at level 20, v at level 20, p at level 200) : proto_scope. - -Notation "<?> x1 .. xn , 'MSG' v {{ P } } ; p" := - (iProto_message - Recv - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..)) - (at level 20, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope. -Notation "<?> x1 .. xn , 'MSG' v ; p" := - (iProto_message - Recv - (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ - λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..)) - (at level 20, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope. -Notation "<?> 'MSG' v {{ P } } ; p" := - (iProto_message - Recv - (tele_app (TT:=TeleO) (v%V,P%I,p%proto))) - (at level 20, v at level 20, P, p at level 200) : proto_scope. -Notation "<?> 'MSG' v ; p" := - (iProto_message - Recv - (tele_app (TT:=TeleO) (v%V,True%I,p%proto))) - (at level 20, v at level 20, p at level 200) : proto_scope. +Arguments iProto_message {_ _} _ _%msg. +Instance: Params (@iProto_message) 3 := {}. Notation "'END'" := iProto_end : proto_scope. +Notation "< a > m" := (iProto_message a m) + (at level 200, a at level 10, m at level 200, + format "< a > m") : proto_scope. +Notation "< a @ x1 .. xn > m" := (iProto_message a (∃ x1, .. (∃ xn, m) ..)) + (at level 200, a at level 10, x1 closed binder, xn closed binder, m at level 200, + format "< a @ x1 .. xn > m") : proto_scope. +Notation "< a @.. x1 .. xn > m" := (iProto_message a (∃.. x1, .. (∃.. xn, m) ..)) + (at level 200, a at level 10, x1 closed binder, xn closed binder, m at level 200, + format "< a @.. x1 .. xn > m") : proto_scope. + +Notation "<!> m" := (<Send> m) (at level 200, m at level 200) : proto_scope. +Notation "<! x1 .. xn > m" := (<!> ∃ x1, .. (∃ xn, m) ..) + (at level 200, x1 closed binder, xn closed binder, m at level 200, + format "<! x1 .. xn > m") : proto_scope. +Notation "<!.. x1 .. xn > m" := (<!> ∃.. x1, .. (∃.. xn, m) ..) + (at level 200, x1 closed binder, xn closed binder, m at level 200, + format "<!.. x1 .. xn > m") : proto_scope. + +Notation "<?> m" := (<Recv> m) (at level 200, m at level 200) : proto_scope. +Notation "<? x1 .. xn > m" := (<?> ∃ x1, .. (∃ xn, m) ..) + (at level 200, x1 closed binder, xn closed binder, m at level 200, + format "<? x1 .. xn > m") : proto_scope. +Notation "<?.. x1 .. xn > m" := (<?> ∃.. x1, .. (∃.. xn, m) ..) + (at level 200, x1 closed binder, xn closed binder, m at level 200, + format "<?.. x1 .. xn > m") : proto_scope. + (** * Operations *) -Program Definition iProto_map_app_cont {Σ V} - (rec : iProto Σ V → iProto Σ V) (pc : iProto Σ V -n> iPropO Σ) : - iProto Σ V -n> iPropO Σ := - λne p1', (∃ p1, pc p1 ∗ p1' ≡ rec p1)%I. +Program Definition iMsg_map {Σ V} + (rec : iProto Σ V → iProto Σ V) (m : iMsg Σ V) : iMsg Σ V := + IMsg (λ v, λne p1', ∃ p1, m v (Next p1) ∗ p1' ≡ Next (rec p1))%I. Next Obligation. solve_proper. Qed. Program Definition iProto_map_app_aux {Σ V} (f : action → action) (p2 : iProto Σ V) (rec : iProto Σ V -n> iProto Σ V) : iProto Σ V -n> iProto Σ V := λne p, - proto_elim p2 (λ a pc, - proto_message (f a) (iProto_map_app_cont rec ∘ pc)) p. + proto_elim p2 (λ a m, + proto_message (f a) (iMsg_map rec (IMsg m))) p. Next Obligation. - intros Σ V f p2 rec n p1 p1' Hp. apply proto_elim_ne=> // a pc1 pc2 Hpc. - apply proto_message_contractive; destruct n as [|n]=> // v p'; simpl in *. - by repeat f_equiv. + intros Σ V f p2 rec n p1 p1' Hp. apply proto_elim_ne=> // a m1 m2 Hm. + apply proto_message_ne=> v p' /=. by repeat f_equiv. Qed. Instance iProto_map_app_aux_contractive {Σ V} f (p2 : iProto Σ V) : Contractive (iProto_map_app_aux f p2). Proof. - intros n rec1 rec2 Hrec p1; simpl. apply proto_elim_ne=> // a pc1 pc2 Hpc. - apply proto_message_contractive; destruct n as [|n]=> // v p'; simpl in *. - by repeat f_equiv. + intros n rec1 rec2 Hrec p1; simpl. apply proto_elim_ne=> // a m1 m2 Hm. + apply proto_message_ne=> v p' /=. by repeat (f_contractive || f_equiv). Qed. Definition iProto_map_app {Σ V} (f : action → action) @@ -183,6 +202,7 @@ Definition iProto_app_eq : @iProto_app = @iProto_app_def := iProto_app_aux.(seal Arguments iProto_app {_ _} _%proto _%proto. Instance: Params (@iProto_app) 2 := {}. Infix "<++>" := iProto_app (at level 60) : proto_scope. +Notation "m <++> p" := (iMsg_map (flip iProto_app p) m) : msg_scope. Definition iProto_dual_def {Σ V} (p : iProto Σ V) : iProto Σ V := iProto_map_app action_dual proto_end p. @@ -192,6 +212,8 @@ Definition iProto_dual_eq : @iProto_dual = @iProto_dual_def := iProto_dual_aux.(seal_eq). Arguments iProto_dual {_ _} _%proto. Instance: Params (@iProto_dual) 2 := {}. +Notation iMsg_dual := (iMsg_map iProto_dual). + Definition iProto_dual_if {Σ V} (d : bool) (p : iProto Σ V) : iProto Σ V := if d then iProto_dual p else p. Arguments iProto_dual_if {_ _} _ _%proto. @@ -219,19 +241,16 @@ Example: *) Definition iProto_le_pre {Σ V} (rec : iProto Σ V → iProto Σ V → iProp Σ) (p1 p2 : iProto Σ V) : iProp Σ := - (p1 ≡ proto_end ∗ p2 ≡ proto_end) ∨ - ∃ a1 a2 pc1 pc2, - p1 ≡ proto_message a1 pc1 ∗ - p2 ≡ proto_message a2 pc2 ∗ + â—‡ (p1 ≡ END ∗ p2 ≡ END) ∨ + ∃ a1 a2 m1 m2, + â—‡ (p1 ≡ <a1> m1) ∗ â—‡ (p2 ≡ <a2> m2) ∗ match a1, a2 with - | Recv, Recv => â–· ∀ v p1', pc1 v p1' -∗ ∃ p2', rec p1' p2' ∗ pc2 v p2' - | Send, Send => â–· ∀ v p2', pc2 v p2' -∗ ∃ p1', rec p1' p2' ∗ pc1 v p1' - | Recv, Send => â–· ∀ v1 v2 p1' p2', - pc1 v1 p1' -∗ pc2 v2 p2' -∗ ∃ pc1' pc2' pt, - rec p1' (proto_message Send pc1') ∗ - rec (proto_message Recv pc2') p2' ∗ - pc1' v2 pt ∗ - pc2' v1 pt + | Recv, Recv => ∀ v p1', m1 v (Next p1') -∗ â—‡ ∃ p2', â–· rec p1' p2' ∗ m2 v (Next p2') + | Send, Send => ∀ v p2', m2 v (Next p2') -∗ â—‡ ∃ p1', â–· rec p1' p2' ∗ m1 v (Next p1') + | Recv, Send => ∀ v1 v2 p1' p2', + m1 v1 (Next p1') -∗ m2 v2 (Next p2') -∗ â—‡ ∃ m1' m2' pt, + â–· rec p1' (<!> m1') ∗ â–· rec (<?> m2') p2' ∗ + m1' v2 (Next pt) ∗ m2' v1 (Next pt) | Send, Recv => False end. Instance iProto_le_pre_ne {Σ V} (rec : iProto Σ V → iProto Σ V → iProp Σ) : @@ -252,6 +271,7 @@ Definition iProto_le {Σ V} (p1 p2 : iProto Σ V) : iProp Σ := fixpoint iProto_le_pre' p1 p2. Arguments iProto_le {_ _} _%proto _%proto. Instance: Params (@iProto_le) 2 := {}. +Notation "p ⊑ q" := (iProto_le p q) : bi_scope. Fixpoint iProto_interp_aux {Σ V} (n : nat) (vsl vsr : list V) (pl pr : iProto Σ V) : iProp Σ := @@ -259,18 +279,18 @@ Fixpoint iProto_interp_aux {Σ V} (n : nat) | 0 => ∃ p, ⌜ vsl = [] ⌠∗ ⌜ vsr = [] ⌠∗ - iProto_le p pl ∗ - iProto_le (iProto_dual p) pr + p ⊑ pl ∗ + iProto_dual p ⊑ pr | S n => - (∃ vl vsl' pc p2', + (∃ vl vsl' m p2', ⌜ vsl = vl :: vsl' ⌠∗ - iProto_le (proto_message Recv pc) pr ∗ - pc vl p2' ∗ + (<?> m) ⊑ pr ∗ + m vl (Next p2') ∗ iProto_interp_aux n vsl' vsr pl p2') ∨ - (∃ vr vsr' pc p1', + (∃ vr vsr' m p1', ⌜ vsr = vr :: vsr' ⌠∗ - iProto_le (proto_message Recv pc) pl ∗ - pc vr p1' ∗ + (<?> m) ⊑ pl ∗ + m vr (Next p1') ∗ iProto_interp_aux n vsl vsr' p1' pr) end. Definition iProto_interp {Σ V} (vsl vsr : list V) (pl pr : iProto Σ V) : iProp Σ := @@ -319,46 +339,72 @@ Definition iProto_ctx `{protoG Σ V} (** * The connective for ownership of channel ends *) Definition iProto_own `{!protoG Σ V} (γ : proto_name) (s : side) (p : iProto Σ V) : iProp Σ := - ∃ p', â–· iProto_le p' p ∗ iProto_own_frag γ s p'. + ∃ p', â–· (p' ⊑ p) ∗ iProto_own_frag γ s p'. Arguments iProto_own {_ _ _} _ _%proto. Instance: Params (@iProto_own) 3 := {}. (** * Proofs *) Section proto. Context `{!protoG Σ V}. + Implicit Types v : V. Implicit Types p pl pr : iProto Σ V. - Implicit Types TT : tele. + Implicit Types m : iMsg Σ V. - (** ** Non-expansiveness of operators *) - Lemma iProto_message_contractive {TT} a - (pc1 pc2 : TT → V * iProp Σ * iProto Σ V) n : - (∀.. x, (pc1 x).1.1 = (pc2 x).1.1) → - (∀.. x, dist_later n ((pc1 x).1.2) ((pc2 x).1.2)) → - (∀.. x, dist_later n ((pc1 x).2) ((pc2 x).2)) → - iProto_message a pc1 ≡{n}≡ iProto_message a pc2. + (** ** Equality *) + Lemma iProto_case p : p ≡ END ∨ ∃ a m, p ≡ <a> m. Proof. - rewrite !tforall_forall=> Hv HP Hp. - rewrite iProto_message_eq /iProto_message_def. - apply proto_message_contractive; destruct n as [|n]=> // v f /=. - repeat (apply Hv || apply HP || apply Hp || f_contractive || f_equiv). + rewrite iProto_message_eq iProto_end_eq. + destruct (proto_case p) as [|(a&m&?)]; [by left|right]. + by exists a, (IMsg m). Qed. - Lemma iProto_message_ne {TT} a (pc1 pc2 : TT → V * iProp Σ * iProto Σ V) n : - (∀.. x, (pc1 x).1.1 = (pc2 x).1.1) → - (∀.. x, (pc1 x).1.2 ≡{n}≡ (pc2 x).1.2) → - (∀.. x, (pc1 x).2 ≡{n}≡ (pc2 x).2) → - iProto_message a pc1 ≡{n}≡ iProto_message a pc2. + Lemma iProto_message_equivI {SPROP : sbi} a1 a2 m1 m2 : + (<a1> m1) ≡ (<a2> m2) ⊣⊢@{SPROP} ⌜ a1 = a2 ⌠∧ (∀ v lp, m1 v lp ≡ m2 v lp). + Proof. rewrite iProto_message_eq. apply proto_message_equivI. Qed. + Lemma iProto_message_end_equivI {SPROP : sbi} a m : (<a> m) ≡ END ⊢@{SPROP} False. + Proof. rewrite iProto_message_eq iProto_end_eq. apply proto_message_end_equivI. Qed. + Lemma iProto_end_message_equivI {SPROP : sbi} a m : END ≡ (<a> m) ⊢@{SPROP} False. + Proof. by rewrite bi.internal_eq_sym iProto_message_end_equivI. Qed. + + (** ** Non-expansiveness of operators *) + Global Instance iMsg_contractive v n : + Proper (dist n ==> dist_later n ==> dist n) (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. rewrite iMsg_base_eq. solve_proper. Qed. + Global Instance iMsg_ne v : NonExpansive2 (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. rewrite iMsg_base_eq. solve_proper. Qed. + Global Instance iMsg_proper v : + Proper ((≡) ==> (≡) ==> (≡)) (iMsg_base (Σ:=Σ) (V:=V) v). + Proof. apply (ne_proper_2 _). Qed. + + Global Instance iMsg_exist_ne A n : + Proper (pointwise_relation _ (dist n) ==> (dist n)) (@iMsg_exist Σ V A). + Proof. rewrite iMsg_exist_eq. solve_proper. Qed. + Global Instance iMsg_exist_proper A : + Proper (pointwise_relation _ (≡) ==> (≡)) (@iMsg_exist Σ V A). + Proof. rewrite iMsg_exist_eq. solve_proper. Qed. + + Global Instance iProto_message_ne a : + NonExpansive (iProto_message (Σ:=Σ) (V:=V) a). + Proof. rewrite iProto_message_eq. solve_proper. Qed. + Global Instance iProto_message_proper a : + Proper ((≡) ==> (≡)) (iProto_message (Σ:=Σ) (V:=V) a). + Proof. apply (ne_proper _). Qed. + + (** Helpers *) + Lemma iMsg_map_base f v P p : + NonExpansive f → + iMsg_map f (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; f p)%msg. Proof. - rewrite !tforall_forall=> Hv HP Hp. - apply iProto_message_contractive; apply tforall_forall; eauto using dist_dist_later. + rewrite iMsg_base_eq. intros ? v' p'; simpl. iSplit. + - iDestruct 1 as (p'') "[(->&Hp&$) Hp']". iSplit; [done|]. + iRewrite "Hp'". iIntros "!>". by iRewrite "Hp". + - iIntros "(->&Hp'&$)". iExists p. iRewrite -"Hp'". auto. Qed. - Lemma iProto_message_proper {TT} a (pc1 pc2 : TT → V * iProp Σ * iProto Σ V) : - (∀.. x, (pc1 x).1.1 = (pc2 x).1.1) → - (∀.. x, (pc1 x).1.2 ≡ (pc2 x).1.2) → - (∀.. x, (pc1 x).2 ≡ (pc2 x).2) → - iProto_message a pc1 ≡ iProto_message a pc2. + Lemma iMsg_map_exist {A} f (m : A → iMsg Σ V) : + iMsg_map f (∃ x, m x) ≡ (∃ x, iMsg_map f (m x))%msg. Proof. - rewrite !tforall_forall=> Hv HP Hp. apply equiv_dist => n. - apply iProto_message_ne; apply tforall_forall=> x; by try apply equiv_dist. + rewrite iMsg_exist_eq. intros v' p'; simpl. iSplit. + - iDestruct 1 as (p'') "[H Hp']". iDestruct "H" as (x) "H"; auto. + - iDestruct 1 as (x p'') "[Hm Hp']". auto. Qed. (** ** Dual *) @@ -372,71 +418,54 @@ Section proto. Proper ((≡) ==> (≡)) (@iProto_dual_if Σ V d). Proof. apply (ne_proper _). Qed. - Lemma iProto_dual_end' : iProto_dual (Σ:=Σ) (V:=V) proto_end ≡ proto_end. + Lemma iProto_dual_end : iProto_dual (Σ:=Σ) (V:=V) END ≡ END. Proof. - rewrite iProto_dual_eq /iProto_dual_def /iProto_map_app. + rewrite iProto_end_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. by rewrite proto_elim_end. Qed. - Lemma iProto_dual_message' a pc : - iProto_dual (Σ:=Σ) (V:=V) (proto_message a pc) - ≡ proto_message (action_dual a) (iProto_map_app_cont iProto_dual ∘ pc). + Lemma iProto_dual_message a m : + iProto_dual (<a> m) ≡ <action_dual a> iMsg_dual m. Proof. - rewrite iProto_dual_eq /iProto_dual_def /iProto_map_app. + rewrite iProto_message_eq iProto_dual_eq /iProto_dual_def /iProto_map_app. etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - apply: proto_elim_message=> a' pc1 pc2 Hpc; f_equiv; solve_proper. - Qed. - - Lemma iProto_dual_end : iProto_dual (Σ:=Σ) (V:=V) END ≡ END%proto. - Proof. rewrite iProto_end_eq. apply iProto_dual_end'. Qed. - - Lemma iProto_dual_message {TT} a (pc : TT → V * iProp Σ * iProto Σ V) : - iProto_dual (iProto_message a pc) - ≡ iProto_message (action_dual a) (prod_map id iProto_dual ∘ pc). - Proof. - rewrite iProto_message_eq /iProto_message_def iProto_dual_message' /=. - do 2 f_equiv; intros p'; simpl. iSplit. - - iDestruct 1 as (pd) "[H Hp']". iDestruct "H" as (x ->) "[Hpc Hpd]". - iExists x. iSplit; [done|]; iFrame. iRewrite "Hp'". by iRewrite "Hpd". - - iDestruct 1 as (x ->) "[Hpc Hpd]"; auto 10. - Qed. - - Lemma iProto_dual_message_tele {TT} a (pc : TT -t> V * iProp Σ * iProto Σ V) : - iProto_dual (iProto_message a (tele_app pc)) - ≡ iProto_message (action_dual a) (tele_app (tele_map (prod_map id iProto_dual) pc)). - Proof. - rewrite iProto_dual_message. - apply iProto_message_proper; apply tforall_forall=> x; by rewrite /=?tele_map_app. + apply: proto_elim_message=> a' m1 m2 Hm; f_equiv; solve_proper. Qed. + Lemma iMsg_dual_base v P p : + iMsg_dual (MSG v {{ P }}; p) ≡ (MSG v {{ P }}; iProto_dual p)%msg. + Proof. apply iMsg_map_base, _. Qed. + Lemma iMsg_dual_exist {A} (m : A → iMsg Σ V) : + iMsg_dual (∃ x, m x) ≡ (∃ x, iMsg_dual (m x))%msg. + Proof. apply iMsg_map_exist. Qed. Global Instance iProto_dual_involutive : Involutive (≡) (@iProto_dual Σ V). Proof. intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p). destruct (proto_case p) as [->|(a&pc&->)]. - { by rewrite !iProto_dual_end'. } - rewrite !iProto_dual_message' involutive. - iApply proto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". - iIntros "!>"; iApply prop_ext; iIntros "!>"; iSplit. + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&m&->)]. + { by rewrite !iProto_dual_end. } + rewrite !iProto_dual_message involutive. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". + iApply prop_ext; iIntros "!>"; iSplit. - iDestruct 1 as (pd) "[H Hp']". iRewrite "Hp'". - iDestruct "H" as (pdd) "[H Hpd]". iRewrite "Hpd". by iRewrite ("IH" $! pdd). - - iIntros "H". iExists (iProto_dual p'). - iSplitL; [by auto|]. by iRewrite ("IH" $! p'). + iDestruct "H" as (pdd) "[H #Hpd]". + iApply (bi.internal_eq_rewrite); [|done]; iIntros "!>". + iRewrite "Hpd". by iRewrite ("IH" $! pdd). + - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists _. + rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). Qed. (** ** Append *) - Lemma iProto_app_end' p : (proto_end <++> p)%proto ≡ p. + Global Instance iProto_app_end_l : LeftId (≡) END (@iProto_app Σ V). Proof. - rewrite iProto_app_eq /iProto_app_def /iProto_map_app. + intros p. rewrite iProto_end_eq iProto_app_eq /iProto_app_def /iProto_map_app. etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. by rewrite proto_elim_end. Qed. - Lemma iProto_app_message' a pc p2 : - (proto_message a pc <++> p2)%proto - ≡ proto_message a (iProto_map_app_cont (flip iProto_app p2) ∘ pc). + Lemma iProto_app_message a m p2 : (<a> m) <++> p2 ≡ <a> m <++> p2. Proof. - rewrite iProto_app_eq /iProto_app_def /iProto_map_app. + rewrite iProto_message_eq iProto_app_eq /iProto_app_def /iProto_map_app. etrans; [apply (fixpoint_unfold (iProto_map_app_aux _ _))|]; simpl. - apply: proto_elim_message => a' pc1 pc2 Hpc. f_equiv; solve_proper. + apply: proto_elim_message=> a' m1 m2 Hm. f_equiv; solve_proper. Qed. Global Instance iProto_app_ne : NonExpansive2 (@iProto_app Σ V). @@ -447,326 +476,411 @@ Section proto. { intros p1 p1' Hp1 p2 p2' <-. by rewrite iProto_app_eq /iProto_app_def Hp1. } intros n p1 p1' Hp1 p2 p2' Hp2. rewrite Hp1. clear p1 Hp1. revert p1'. induction (lt_wf n) as [n _ IH]; intros p1. - destruct (proto_case p1) as [->|(a&pc&->)]. - { by rewrite !iProto_app_end'. } - rewrite !iProto_app_message'. - apply proto_message_contractive; destruct n as [|n]=> // v p' /=. - do 4 f_equiv. apply IH; eauto using dist_le with lia. + destruct (iProto_case p1) as [->|(a&m&->)]. + { by rewrite !left_id. } + rewrite !iProto_app_message. f_equiv=> v p' /=. do 4 f_equiv. + f_contractive. apply IH; eauto using dist_le with lia. Qed. Global Instance iProto_app_proper : Proper ((≡) ==> (≡) ==> (≡)) (@iProto_app Σ V). Proof. apply (ne_proper_2 _). Qed. - Lemma iProto_app_message {TT} a (pc : TT → V * iProp Σ * iProto Σ V) p2 : - (iProto_message a pc <++> p2)%proto - ≡ iProto_message a (prod_map id (flip iProto_app p2) ∘ pc). - Proof. - rewrite iProto_message_eq /iProto_message_def iProto_app_message' /=. - f_equiv=> v ps /=. iSplit. - - iDestruct 1 as (p1') "[H Hps]". iDestruct "H" as (x ->) "[Hpc #Hp1']". - iExists x. iSplit; [done|]. iFrame. iRewrite "Hps". by iRewrite "Hp1'". - - iDestruct 1 as (x ->) "[Hpc Hps]". auto 10. - Qed. - - Lemma iProto_app_message_tele {TT} a (pc : TT -t> V * iProp Σ * iProto Σ V) p2 : - (iProto_message a (tele_app pc) <++> p2)%proto - ≡ iProto_message a (tele_app (tele_map (prod_map id (flip iProto_app p2)) pc)). - Proof. - rewrite iProto_app_message. - apply iProto_message_proper; apply tforall_forall=> x; by rewrite /=?tele_map_app. - Qed. + Lemma iMsg_app_base v P p1 p2 : + ((MSG v {{ P }}; p1) <++> p2)%msg ≡ (MSG v {{ P }}; p1 <++> p2)%msg. + Proof. apply: iMsg_map_base. Qed. + Lemma iMsg_app_exist {A} (m : A → iMsg Σ V) p2 : + ((∃ x, m x) <++> p2)%msg ≡ (∃ x, m x <++> p2)%msg. + Proof. apply iMsg_map_exist. Qed. - Global Instance iProto_app_end_l : LeftId (≡) END%proto (@iProto_app Σ V). - Proof. intros p. by rewrite iProto_end_eq /iProto_end_def iProto_app_end'. Qed. - Global Instance iProto_app_end_r : RightId (≡) END%proto (@iProto_app Σ V). + Global Instance iProto_app_end_r : RightId (≡) END (@iProto_app Σ V). Proof. - rewrite iProto_end_eq /iProto_end_def. intros p. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p). destruct (proto_case p) as [->|(a&pc&->)]. - { by rewrite iProto_app_end'. } - rewrite iProto_app_message'. - iApply proto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". - iIntros "!>". iApply prop_ext; iIntros "!>". iSplit. - - iDestruct 1 as (p1') "[H Hp']". iRewrite "Hp'". by iRewrite ("IH" $! p1'). - - iIntros "H". iExists p'. iFrame "H". by iRewrite ("IH" $! p'). + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|(a&m&->)]. + { by rewrite left_id. } + rewrite iProto_app_message. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p') "/=". + iApply prop_ext; iIntros "!>". iSplit. + - iDestruct 1 as (p1') "[H Hp']". iRewrite "Hp'". + iApply (bi.internal_eq_rewrite); [|done]; iIntros "!>". + by iRewrite ("IH" $! p1'). + - iIntros "H". destruct (Next_uninj p') as [p'' Hp']. iExists p''. + rewrite Hp'. iSplitL; [by auto|]. iIntros "!>". by iRewrite ("IH" $! p''). Qed. Global Instance iProto_app_assoc : Assoc (≡) (@iProto_app Σ V). Proof. intros p1 p2 p3. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p1). destruct (proto_case p1) as [->|(a&pc&->)]. - { by rewrite !iProto_app_end'. } - rewrite !iProto_app_message'. - iApply proto_message_equivI; iSplit; [done|]; iIntros (v p123) "/=". - iIntros "!>". iApply prop_ext; iIntros "!>". iSplit. + iLöb as "IH" forall (p1). destruct (iProto_case p1) as [->|(a&m&->)]. + { by rewrite !left_id. } + rewrite !iProto_app_message. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p123) "/=". + iApply prop_ext; iIntros "!>". iSplit. - iDestruct 1 as (p1') "[H #Hp']". - iExists (p1' <++> p2)%proto. iSplitL; [by auto|]. - iRewrite "Hp'". iApply "IH". + iExists (p1' <++> p2). iSplitL; [by auto|]. + iRewrite "Hp'". iIntros "!>". iApply "IH". - iDestruct 1 as (p12) "[H #Hp123]". iDestruct "H" as (p1') "[H #Hp12]". iExists p1'. iFrame "H". iRewrite "Hp123". - iRewrite "Hp12". by iRewrite ("IH" $! p1'). + iIntros "!>". iRewrite "Hp12". by iRewrite ("IH" $! p1'). Qed. Lemma iProto_dual_app p1 p2 : - iProto_dual (p1 <++> p2) ≡ (iProto_dual p1 <++> iProto_dual p2)%proto. + iProto_dual (p1 <++> p2) ≡ iProto_dual p1 <++> iProto_dual p2. Proof. apply (uPred.internal_eq_soundness (M:=iResUR Σ)). - iLöb as "IH" forall (p1 p2). destruct (proto_case p1) as [->|(a&pc&->)]. - { by rewrite iProto_dual_end' !iProto_app_end'. } - rewrite iProto_dual_message' !iProto_app_message' iProto_dual_message' /=. - iApply proto_message_equivI; iSplit; [done|]; iIntros (v p12) "/=". - iIntros "!>"; iApply prop_ext; iIntros "!>". iSplit. + iLöb as "IH" forall (p1 p2). destruct (iProto_case p1) as [->|(a&m&->)]. + { by rewrite iProto_dual_end !left_id. } + rewrite iProto_dual_message !iProto_app_message iProto_dual_message /=. + iApply iProto_message_equivI; iSplit; [done|]; iIntros (v p12) "/=". + iApply prop_ext; iIntros "!>". iSplit. - iDestruct 1 as (p12d) "[H #Hp12]". iDestruct "H" as (p1') "[H #Hp12d]". iExists (iProto_dual p1'). iSplitL; [by auto|]. - iRewrite "Hp12". iRewrite "Hp12d". iApply "IH". + iRewrite "Hp12". iIntros "!>". iRewrite "Hp12d". iApply "IH". - iDestruct 1 as (p1') "[H #Hp12]". iDestruct "H" as (p1d) "[H #Hp1']". - iExists (p1d <++> p2)%proto. iSplitL; [by auto|]. - iRewrite "Hp12". iRewrite "Hp1'". by iRewrite ("IH" $! p1d p2). + iExists (p1d <++> p2). iSplitL; [by auto|]. + iRewrite "Hp12". iIntros "!>". iRewrite "Hp1'". by iRewrite ("IH" $! p1d p2). Qed. (** ** Protocol entailment **) + Lemma iProto_le_unfold p1 p2 : iProto_le p1 p2 ≡ iProto_le_pre iProto_le p1 p2. + Proof. apply: (fixpoint_unfold iProto_le_pre'). Qed. + Global Instance iProto_le_ne : NonExpansive2 (@iProto_le Σ V). Proof. solve_proper. Qed. Global Instance iProto_le_proper : Proper ((≡) ==> (≡) ==> (⊣⊢)) (@iProto_le Σ V). Proof. solve_proper. Qed. - - Lemma iProto_le_unfold p1 p2 : iProto_le p1 p2 ≡ iProto_le_pre iProto_le p1 p2. - Proof. apply: (fixpoint_unfold iProto_le_pre'). Qed. - - Lemma iProto_le_refl p : ⊢ iProto_le p p. + Global Instance iProto_le_is_except_0 p1 p2 : IsExcept0 (p1 ⊑ p2). Proof. - iLöb as "IH" forall (p). destruct (proto_case p) as [->|([]&pc&->)]. - - rewrite iProto_le_unfold. iLeft; by auto. - - rewrite iProto_le_unfold. iRight. iExists _, _, _, _; do 2 (iSplit; [done|]). - iIntros "!>" (v p') "Hpc". iExists p'. iFrame "Hpc". iApply "IH". - - rewrite iProto_le_unfold. iRight. iExists _, _, _, _; do 2 (iSplit; [done|]). - iIntros "!>" (v p') "Hpc". iExists p'. iFrame "Hpc". iApply "IH". + rewrite /IsExcept0 /sbi_except_0. iIntros "[H|$]". + rewrite iProto_le_unfold /iProto_le_pre. iLeft. by iMod "H". Qed. - Lemma iProto_le_end_inv p : iProto_le p proto_end -∗ p ≡ proto_end. + Lemma iProto_le_end : ⊢ END ⊑ (END : iProto Σ V). + Proof. rewrite iProto_le_unfold. iLeft. auto 10. Qed. + + Lemma iProto_le_send m1 m2 : + (∀ v p2', m2 v (Next p2') -∗ â—‡ ∃ p1', â–· (p1' ⊑ p2') ∗ m1 v (Next p1')) -∗ + (<!> m1) ⊑ (<!> m2). + Proof. rewrite iProto_le_unfold. iIntros "H". iRight. auto 10. Qed. + Lemma iProto_le_recv m1 m2 : + (∀ v p1', m1 v (Next p1') -∗ â—‡ ∃ p2', â–· (p1' ⊑ p2') ∗ m2 v (Next p2')) -∗ + (<?> m1) ⊑ (<?> m2). + Proof. rewrite iProto_le_unfold. iIntros "H". iRight. auto 10. Qed. + Lemma iProto_le_swap m1 m2 : + (∀ v1 v2 p1' p2', + m1 v1 (Next p1') -∗ m2 v2 (Next p2') -∗ â—‡ ∃ m1' m2' pt, + â–· (p1' ⊑ <!> m1') ∗ â–· ((<?> m2') ⊑ p2') ∗ + m1' v2 (Next pt) ∗ m2' v1 (Next pt)) -∗ + (<?> m1) ⊑ (<!> m2). + Proof. rewrite iProto_le_unfold. iIntros "H". iRight. auto 10. Qed. + + Lemma iProto_le_end_inv p : p ⊑ END -∗ â—‡ (p ≡ END). Proof. rewrite iProto_le_unfold. iIntros "[[Hp _]|H] //". - iDestruct "H" as (a1 a2 pc1 pc2) "(_ & Heq & _)". - by iDestruct (proto_end_message_equivI with "Heq") as %[]. + iDestruct "H" as (a1 a2 m1 m2) "(_ & >Heq & _)". + by iDestruct (iProto_end_message_equivI with "Heq") as %[]. Qed. - Lemma iProto_le_send_inv p1 pc2 : - iProto_le p1 (proto_message Send pc2) -∗ ∃ a1 pc1, - p1 ≡ proto_message a1 pc1 ∗ + Lemma iProto_le_send_inv p1 m2 : + p1 ⊑ (<!> m2) -∗ ∃ a1 m1, + â—‡ (p1 ≡ <a1> m1) ∗ match a1 with - | Send => â–· ∀ v p2', pc2 v p2' -∗ ∃ p1', iProto_le p1' p2' ∗ pc1 v p1' - | Recv => â–· ∀ v1 v2 p1' p2', - pc1 v1 p1' -∗ pc2 v2 p2' -∗ ∃ pc1' pc2' pt, - iProto_le p1' (proto_message Send pc1') ∗ - iProto_le (proto_message Recv pc2') p2' ∗ - pc1' v2 pt ∗ - pc2' v1 pt + | Send => ∀ v p2', + m2 v (Next p2') -∗ â—‡ ∃ p1', â–· (p1' ⊑ p2') ∗ m1 v (Next p1') + | Recv => ∀ v1 v2 p1' p2', + m1 v1 (Next p1') -∗ m2 v2 (Next p2') -∗ â—‡ ∃ m1' m2' pt, + â–· (p1' ⊑ <!> m1') ∗ â–· ((<?> m2') ⊑ p2') ∗ + m1' v2 (Next pt) ∗ m2' v1 (Next pt) end. Proof. rewrite iProto_le_unfold. iIntros "[[_ Heq]|H]". - { by iDestruct (proto_message_end_equivI with "Heq") as %[]. } - iDestruct "H" as (a1 a2 pc1 pc2') "(Hp1 & Hp2 & H)". - iDestruct (proto_message_equivI with "Hp2") as (<-) "{Hp2} #Hpc". - iExists _, _; iSplit; [done|]. destruct a1. - - iIntros "!>" (v p2'). by iRewrite ("Hpc" $! v p2'). - - iIntros "!>" (v1 v2 p1' p2'). by iRewrite ("Hpc" $! v2 p2'). + { iExists inhabitant, inhabitant. + iSplit; [|destruct inhabitant]; + iMod "Heq"; iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". + iExists _, _; iSplit; [done|]. destruct a1, a2. + - iIntros (v p2') "Hm2". iMod "Hp1". iMod "Hp2". + iDestruct (iProto_message_equivI with "Hp2") as (_) "{Hp2} #Hm". + iApply "H". by iRewrite -("Hm" $! v (Next p2')). + - done. + - iIntros (v1 v2 p1' p2') "Hm1 Hm2". iMod "Hp1". iMod "Hp2". + iDestruct (iProto_message_equivI with "Hp2") as (_) "{Hp2} #Hm". + iApply ("H" with "Hm1"). by iRewrite -("Hm" $! v2 (Next p2')). + - iMod "Hp2". iDestruct (iProto_message_equivI with "Hp2") as ([=]) "_". + Qed. + Lemma iProto_le_send_send_inv m1 m2 v p2' : + (<!> m1) ⊑ (<!> m2) -∗ + m2 v (Next p2') -∗ â—‡ ∃ p1', â–· (p1' ⊑ p2') ∗ m1 v (Next p1'). + Proof. + iIntros "H Hm2". iDestruct (iProto_le_send_inv with "H") as (a m1') "[>Hm1 H]". + iDestruct (iProto_message_equivI with "Hm1") as (<-) "Hm1". + iMod ("H" with "Hm2") as (p1') "[Hle Hm]". + iRewrite -("Hm1" $! v (Next p1')) in "Hm". auto with iFrame. + Qed. + Lemma iProto_le_recv_send_inv m1 m2 v1 v2 p1' p2' : + (<?> m1) ⊑ (<!> m2) -∗ + m1 v1 (Next p1') -∗ m2 v2 (Next p2') -∗ â—‡ ∃ m1' m2' pt, + â–· (p1' ⊑ <!> m1') ∗ â–· ((<?> m2') ⊑ p2') ∗ + m1' v2 (Next pt) ∗ m2' v1 (Next pt). + Proof. + iIntros "H Hm1 Hm2". iDestruct (iProto_le_send_inv with "H") as (a m1') "[>Hm H]". + iDestruct (iProto_message_equivI with "Hm") as (<-) "{Hm} #Hm". + iApply ("H" with "[Hm1] Hm2"). by iRewrite -("Hm" $! v1 (Next p1')). Qed. - Lemma iProto_le_recv_inv p1 pc2 : - iProto_le p1 (proto_message Recv pc2) -∗ ∃ pc1, - p1 ≡ proto_message Recv pc1 ∗ - â–· ∀ v p1', pc1 v p1' -∗ ∃ p2', iProto_le p1' p2' ∗ pc2 v p2'. + Lemma iProto_le_recv_inv p1 m2 : + p1 ⊑ (<?> m2) -∗ ∃ m1, + â—‡ (p1 ≡ <?> m1) ∗ + ∀ v p1', m1 v (Next p1') -∗ â—‡ ∃ p2', â–· (p1' ⊑ p2') ∗ m2 v (Next p2'). Proof. rewrite iProto_le_unfold. iIntros "[[_ Heq]|H]". - { by iDestruct (proto_message_end_equivI with "Heq") as %[]. } - iDestruct "H" as (a1 a2 pc1 pc2') "(Hp1 & Hp2 & H)". - iDestruct (proto_message_equivI with "Hp2") as (<-) "{Hp2} #Hpc2". - destruct a1; [done|]. iExists _; iSplit; [done|]. - iIntros "!>" (v p1') "Hpc". iDestruct ("H" with "Hpc") as (p2') "[Hle Hpc]". - iExists p2'. iFrame "Hle". by iRewrite ("Hpc2" $! v p2'). + { iExists inhabitant. + iSplit; iMod "Heq"; iDestruct (iProto_message_end_equivI with "Heq") as %[]. } + iDestruct "H" as (a1 a2 m1 m2') "(Hp1 & Hp2 & H)". + iExists m1. iSplit; iMod "Hp1"; iMod "Hp2"; + iDestruct (iProto_message_equivI with "Hp2") as (<-) "{Hp2} #Hm2"; + destruct a1; try done. + iIntros (v p1') "Hm". iMod ("H" with "Hm") as (p2') "[Hle Hm]". + iExists p2'. iIntros "{$Hle}". by iRewrite ("Hm2" $! v (Next p2')). + Qed. + Lemma iProto_le_recv_recv_inv m1 m2 v p1' : + (<?> m1) ⊑ (<?> m2) -∗ + m1 v (Next p1') -∗ â—‡ ∃ p2', â–· (p1' ⊑ p2') ∗ m2 v (Next p2'). + Proof. + iIntros "H Hm2". iDestruct (iProto_le_recv_inv with "H") as (m1') "[>Hm1 H]". + iApply "H". iDestruct (iProto_message_equivI with "Hm1") as (_) "Hm1". + by iRewrite -("Hm1" $! v (Next p1')). Qed. - Lemma iProto_le_trans p1 p2 p3 : - iProto_le p1 p2 -∗ iProto_le p2 p3 -∗ iProto_le p1 p3. + Lemma iProto_le_refl p : ⊢ p ⊑ p. + Proof. + iLöb as "IH" forall (p). destruct (iProto_case p) as [->|([]&m&->)]. + - iApply iProto_le_end. + - iApply iProto_le_send. auto 10 with iFrame. + - iApply iProto_le_recv. auto 10 with iFrame. + Qed. + + Lemma iProto_le_trans p1 p2 p3 : p1 ⊑ p2 -∗ p2 ⊑ p3 -∗ p1 ⊑ p3. Proof. iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3). - destruct (proto_case p3) as [->|([]&pc3&->)]. - - by iRewrite (iProto_le_end_inv with "H2") in "H1". - - iDestruct (iProto_le_send_inv with "H2") as (a2 pc2) "[Hp2 H2]". + destruct (iProto_case p3) as [->|([]&m3&->)]. + - iMod (iProto_le_end_inv with "H2") as "H2". by iRewrite "H2" in "H1". + - iDestruct (iProto_le_send_inv with "H2") as (a2 m2) "[>Hp2 H2]". iRewrite "Hp2" in "H1"; clear p2. destruct a2. - + iDestruct (iProto_le_send_inv with "H1") as (a1 pc1) "[Hp1 H1]". - iRewrite "Hp1"; clear p1. rewrite iProto_le_unfold; iRight. - iExists _, _, _, _; do 2 (iSplit; [done|]). destruct a1. - * iIntros "!>" (v p3') "Hpc". - iDestruct ("H2" with "Hpc") as (p2') "[Hle Hpc]". - iDestruct ("H1" with "Hpc") as (p1') "[Hle' Hpc]". - iExists p1'. iFrame "Hpc". by iApply ("IH" with "Hle'"). - * iIntros "!>" (v1 v3 p1' p3') "Hpc1 Hpc3". - iDestruct ("H2" with "Hpc3") as (p2') "[Hle Hpc2]". - iDestruct ("H1" with "Hpc1 Hpc2") as (pc1' pc2' pt) "(Hp1' & Hp2' & Hpc)". - iExists pc1', pc2', pt. iFrame "Hp1' Hpc". by iApply ("IH" with "Hp2'"). - + iDestruct (iProto_le_recv_inv with "H1") as (pc1) "[Hp1 H1]". - iRewrite "Hp1"; clear p1. rewrite iProto_le_unfold; iRight. - iExists _, _, _, _; do 2 (iSplit; [done|]); simpl. - iIntros "!>" (v1 v3 p1' p3') "Hpc1 Hpc3". - iDestruct ("H1" with "Hpc1") as (p2') "[Hle Hpc2]". - iDestruct ("H2" with "Hpc2 Hpc3") as (pc2' pc3' pt) "(Hp2' & Hp3' & Hpc)". - iExists pc2', pc3', pt. iFrame "Hp3' Hpc". by iApply ("IH" with "Hle"). - - iDestruct (iProto_le_recv_inv with "H2") as (pc2) "[Hp2 H3]". + + iDestruct (iProto_le_send_inv with "H1") as (a1 m1) "[>Hp1 H1]". + iRewrite "Hp1"; clear p1. destruct a1. + * iApply iProto_le_send. iIntros (v p3') "Hm3". + iMod ("H2" with "Hm3") as (p2') "[Hle Hm2]". + iMod ("H1" with "Hm2") as (p1') "[Hle' Hm1]". + iExists p1'. iIntros "{$Hm1} !>". by iApply ("IH" with "Hle'"). + * iApply iProto_le_swap. iIntros (v1 v3 p1' p3') "Hm1 Hm3". + iMod ("H2" with "Hm3") as (p2') "[Hle Hm2]". + iMod ("H1" with "Hm1 Hm2") as (m1' m2' pt) "(Hp1' & Hp2' & Hm)". + iExists m1', m2', pt. iIntros "{$Hp1' $Hm} !>". by iApply ("IH" with "Hp2'"). + + iDestruct (iProto_le_recv_inv with "H1") as (m1) "[>Hp1 H1]". + iRewrite "Hp1"; clear p1. iApply iProto_le_swap. + iIntros (v1 v3 p1' p3') "Hm1 Hm3". + iMod ("H1" with "Hm1") as (p2') "[Hle Hm2]". + iMod ("H2" with "Hm2 Hm3") as (m2' m3' pt) "(Hp2' & Hp3' & Hm)". + iExists m2', m3', pt. iIntros "{$Hp3' $Hm} !>". by iApply ("IH" with "Hle"). + - iDestruct (iProto_le_recv_inv with "H2") as (m2) "[>Hp2 H3]". iRewrite "Hp2" in "H1". - iDestruct (iProto_le_recv_inv with "H1") as (pc1) "[Hp1 H2]". - iRewrite "Hp1". rewrite iProto_le_unfold. iRight. - iExists _, _, _, _; do 2 (iSplit; [done|]). - iIntros "!>" (v p1') "Hpc". - iDestruct ("H2" with "Hpc") as (p2') "[Hle Hpc]". - iDestruct ("H3" with "Hpc") as (p3') "[Hle' Hpc]". - iExists p3'. iFrame "Hpc". by iApply ("IH" with "Hle"). + iDestruct (iProto_le_recv_inv with "H1") as (m1) "[>Hp1 H2]". + iRewrite "Hp1". iApply iProto_le_recv. iIntros (v p1') "Hm1". + iMod ("H2" with "Hm1") as (p2') "[Hle Hm2]". + iMod ("H3" with "Hm2") as (p3') "[Hle' Hm3]". + iExists p3'. iIntros "{$Hm3} !>". by iApply ("IH" with "Hle"). Qed. - Lemma iProto_le_send {TT1 TT2} (pc1 : TT1 → V * iProp Σ * iProto Σ V) - (pc2 : TT2 → V * iProp Σ * iProto Σ V) : - â–· (∀.. x2 : TT2, (pc2 x2).1.2 -∗ ∃.. x1 : TT1, - ⌜(pc1 x1).1.1 = (pc2 x2).1.1⌠∗ - (pc1 x1).1.2 ∗ - iProto_le (pc1 x1).2 (pc2 x2).2) -∗ - iProto_le (iProto_message Send pc1) (iProto_message Send pc2). + Lemma iProto_le_base a v P p1 p2 : + â–· (p1 ⊑ p2) -∗ + (<a> MSG v {{ P }}; p1) ⊑ (<a> MSG v {{ P }}; p2). Proof. - iIntros "H". rewrite iProto_le_unfold iProto_message_eq. - iRight. iExists _, _, _, _; do 2 (iSplit; [done|]). - iIntros "!>" (v p2') "/=". iDestruct 1 as (x2 ->) "[Hpc #Heq]". - iDestruct ("H" with "Hpc") as (x1 ?) "[Hpc Hle]". - iExists (pc1 x1).2. iSplitL "Hle"; [by iRewrite "Heq"|]. - iExists x1. iSplit; [done|]. iSplit; [by iApply "Hpc"|done]. + rewrite iMsg_base_eq. iIntros "H". destruct a. + - iApply iProto_le_send. iIntros (v' p') "(->&Hp&$) !>". + iExists p1. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". + - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&$) !>". + iExists p2. iSplit; [|by auto]. iIntros "!>". by iRewrite -"Hp". + Qed. + Lemma iProto_le_base_swap v1 v2 P1 P2 p : + ⊢ (<?> MSG v1 {{ P1 }}; <!> MSG v2 {{ P2 }}; p) + ⊑ (<!> MSG v2 {{ P2 }}; <?> MSG v1 {{ P1 }}; p). + Proof. + rewrite iMsg_base_eq. iApply iProto_le_swap. + iIntros (v1' v2' p1' p2') "/= (->&#Hp1&HP1) (->&#Hp2&HP2) !>". iExists _, _, p. + iSplitR; [iIntros "!>"; iRewrite -"Hp1"; iApply iProto_le_refl|]. + iSplitR; [iIntros "!>"; iRewrite -"Hp2"; iApply iProto_le_refl|]. + simpl; auto with iFrame. Qed. - Lemma iProto_le_recv {TT1 TT2} (pc1 : TT1 → V * iProp Σ * iProto Σ V) - (pc2 : TT2 → V * iProp Σ * iProto Σ V) : - â–· (∀.. x1 : TT1, (pc1 x1).1.2 -∗ ∃.. x2 : TT2, - ⌜(pc1 x1).1.1 = (pc2 x2).1.1⌠∗ - (pc2 x2).1.2 ∗ - iProto_le (pc1 x1).2 (pc2 x2).2) -∗ - iProto_le (iProto_message Recv pc1) (iProto_message Recv pc2). + Lemma iProto_le_payload_elim_l a m v P p : + (P -∗ (<?> MSG v; p) ⊑ (<a> m)) -∗ + (<?> MSG v {{ P }}; p) ⊑ (<a> m). + Proof. + rewrite iMsg_base_eq. iIntros "H". destruct a. + - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= (#?&#?&HP) Hm2 /=". + iApply (iProto_le_recv_send_inv with "(H HP)"); simpl; auto. + - iApply iProto_le_recv. iIntros (v' p') "(->&Hp&HP)". + iApply (iProto_le_recv_recv_inv with "(H HP)"); simpl; auto. + Qed. + Lemma iProto_le_payload_elim_r a m v P p : + (P -∗ (<a> m) ⊑ (<!> MSG v; p)) -∗ + (<a> m) ⊑ (<!> MSG v {{ P }}; p). + Proof. + rewrite iMsg_base_eq. iIntros "H". destruct a. + - iApply iProto_le_send. iIntros (v' p') "(->&Hp&HP)". + iApply (iProto_le_send_send_inv with "(H HP)"); simpl; auto. + - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 (->&#?&HP) /=". + iApply (iProto_le_recv_send_inv with "(H HP) Hm1"); simpl; auto. + Qed. + Lemma iProto_le_payload_intro_l v P p : + P -∗ (<!> MSG v {{ P }}; p) ⊑ (<!> MSG v; p). + Proof. + rewrite iMsg_base_eq. + iIntros "HP". iApply iProto_le_send. iIntros (v' p') "(->&Hp&_) !> /=". + iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. + Qed. + Lemma iProto_le_payload_intro_r v P p : + P -∗ (<?> MSG v; p) ⊑ (<?> MSG v {{ P }}; p). Proof. - iIntros "H". rewrite iProto_le_unfold iProto_message_eq. - iRight. iExists _, _, _, _; do 2 (iSplit; [done|]). - iIntros "!>" (v p1') "/=". iDestruct 1 as (x1 ->) "[Hpc #Heq]". - iDestruct ("H" with "Hpc") as (x2 ?) "[Hpc Hle]". - iExists (pc2 x2).2. iSplitL "Hle"; [by iRewrite "Heq"|]. - iExists x2. iSplit; [done|]. iSplit; [by iApply "Hpc"|done]. + rewrite iMsg_base_eq. + iIntros "HP". iApply iProto_le_recv. iIntros (v' p') "(->&Hp&_) !> /=". + iExists p'. iSplitR; [iApply iProto_le_refl|]. auto. Qed. - Lemma iProto_le_swap {TT1 TT2} (pc1 : TT1 → V * iProp Σ * iProto Σ V) - (pc2 : TT2 → V * iProp Σ * iProto Σ V) : - â–· (∀.. (x1 : TT1) (x2 : TT2), - (pc1 x1).1.2 -∗ (pc2 x2).1.2 -∗ - ∃ {TT3 TT4} (pc3 : TT3 → V * iProp Σ * iProto Σ V) - (pc4 : TT4 → V * iProp Σ * iProto Σ V), ∃.. (x3 : TT3) (x4 : TT4), - ⌜(pc1 x1).1.1 = (pc4 x4).1.1⌠∗ - ⌜(pc2 x2).1.1 = (pc3 x3).1.1⌠∗ - iProto_le (pc1 x1).2 (iProto_message Send pc3) ∗ - iProto_le (iProto_message Recv pc4) (pc2 x2).2 ∗ - (pc3 x3).1.2 ∗ (pc4 x4).1.2 ∗ - ((pc3 x3).2 ≡ (pc4 x4).2)) -∗ - iProto_le (iProto_message Recv pc1) (iProto_message Send pc2). + Lemma iProto_le_exist_elim_l {A} (m1 : A → iMsg Σ V) a m2 : + (∀ x, (<?> m1 x) ⊑ (<a> m2)) -∗ + (<? x> m1 x) ⊑ (<a> m2). Proof. - iIntros "H". rewrite iProto_le_unfold iProto_message_eq. - iRight. iExists _, _, _, _; do 2 (iSplit; [done|]); simpl. - iIntros "!>" (v1 v2 p1 p2). - iDestruct 1 as (x1 ->) "[Hpc1 #Heq1]"; iDestruct 1 as (x2 ->) "[Hpc2 #Heq2]". - iDestruct ("H" with "Hpc1 Hpc2") - as (TT3 TT4 pc3 pc4 x3 x4 ??) "(H1 & H2 & Hpc1 & Hpc2 & #H)". - iExists _, _, (pc3 x3).2. iSplitL "H1"; [by iRewrite "Heq1"|]. - iSplitL "H2"; [by iRewrite "Heq2"|]. simpl. iSplitL "Hpc1"; eauto. + rewrite iMsg_exist_eq. iIntros "H". destruct a. + - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1 Hm2 /=". + iDestruct "Hm1" as (x) "Hm1". + iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). + - iApply iProto_le_recv. iIntros (v p1') "/=". iDestruct 1 as (x) "Hm". + by iApply (iProto_le_recv_recv_inv with "H"). + Qed. + Lemma iProto_le_exist_elim_r {A} a m1 (m2 : A → iMsg Σ V) : + (∀ x, (<a> m1) ⊑ (<!> m2 x)) -∗ + (<a> m1) ⊑ (<! x> m2 x). + Proof. + rewrite iMsg_exist_eq. iIntros "H". destruct a. + - iApply iProto_le_send. iIntros (v p2'). iDestruct 1 as (x) "Hm". + by iApply (iProto_le_send_send_inv with "H"). + - iApply iProto_le_swap. iIntros (v1 v2 p1' p2') "/= Hm1". + iDestruct 1 as (x) "Hm2". + iApply (iProto_le_recv_send_inv with "H Hm1 Hm2"). + Qed. + Lemma iProto_le_exist_intro_l {A} (m : A → iMsg Σ V) a : + ⊢ (<! x> m x) ⊑ (<!> m a). + Proof. + rewrite iMsg_exist_eq. iApply iProto_le_send. iIntros (v p') "Hm !> /=". + iExists p'. iSplitR; last by auto. iApply iProto_le_refl. + Qed. + Lemma iProto_le_exist_intro_r {A} (m : A → iMsg Σ V) a : + ⊢ (<?> m a) ⊑ (<? x> m x). + Proof. + rewrite iMsg_exist_eq. iApply iProto_le_recv. iIntros (v p') "Hm !> /=". + iExists p'. iSplitR; last by auto. iApply iProto_le_refl. Qed. - Lemma iProto_le_swap_simple {TT1 TT2} (v1 : TT1 → V) (v2 : TT2 → V) - (P1 : TT1 → iProp Σ) (P2 : TT2 → iProp Σ) (p : TT1 → TT2 → iProto Σ V) : - ⊢ iProto_le - (iProto_message Recv (λ x1, - (v1 x1, P1 x1, iProto_message Send (λ x2, (v2 x2, P2 x2, p x1 x2))))) - (iProto_message Send (λ x2, - (v2 x2, P2 x2, iProto_message Recv (λ x1, (v1 x1, P1 x1, p x1 x2))))). + Lemma iProto_le_texist_elim_l {TT : tele} (m1 : TT → iMsg Σ V) a m2 : + (∀ x, (<?> m1 x) ⊑ (<a> m2)) -∗ + (<?.. x> m1 x) ⊑ (<a> m2). + Proof. + iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. + iApply iProto_le_exist_elim_l; iIntros (x). + iApply "IH". iIntros (xs). iApply "H". + Qed. + Lemma iProto_le_texist_elim_r {TT : tele} a m1 (m2 : TT → iMsg Σ V) : + (∀ x, (<a> m1) ⊑ (<!> m2 x)) -∗ + (<a> m1) ⊑ (<!.. x> m2 x). + Proof. + iIntros "H". iInduction TT as [|T TT] "IH"; simpl; [done|]. + iApply iProto_le_exist_elim_r; iIntros (x). + iApply "IH". iIntros (xs). iApply "H". + Qed. + Lemma iProto_le_texist_intro_l {TT : tele} (m : TT → iMsg Σ V) x : + ⊢ (<!.. x> m x) ⊑ (<!> m x). Proof. - iApply iProto_le_swap. iIntros "!>" (x1 x2) "/= HP1 HP2". - iExists TT2, TT1, (λ x2, (v2 x2, P2 x2, p x1 x2)), - (λ x1, (v1 x1, P1 x1, p x1 x2)), x2, x1; simpl. - do 2 (iSplit; [done|]). do 2 (iSplitR; [iApply iProto_le_refl|]). by iFrame. + induction x as [|T TT x xs IH]; simpl; [iApply iProto_le_refl|]. + iApply iProto_le_trans; [by iApply iProto_le_exist_intro_l|]. iApply IH. + Qed. + Lemma iProto_le_texist_intro_r {TT : tele} (m : TT → iMsg Σ V) x : + ⊢ (<?> m x) ⊑ (<?.. x> m x). + Proof. + induction x as [|T TT x xs IH]; simpl; [iApply iProto_le_refl|]. + iApply iProto_le_trans; [|by iApply iProto_le_exist_intro_r]. iApply IH. Qed. - Lemma iProto_le_dual p1 p2 : - iProto_le p2 p1 -∗ iProto_le (iProto_dual p1) (iProto_dual p2). + Lemma iProto_le_dual p1 p2 : p2 ⊑ p1 -∗ iProto_dual p1 ⊑ iProto_dual p2. Proof. iIntros "H". iLöb as "IH" forall (p1 p2). - destruct (proto_case p1) as [->|([]&pc1&->)]. - - iRewrite (iProto_le_end_inv with "H"). iApply iProto_le_refl. - - iDestruct (iProto_le_send_inv with "H") as (a2 pc2) "[Hp2 H]". - iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message'). - rewrite iProto_le_unfold; iRight. - iExists _, _, _, _; do 2 (iSplit; [done|]); simpl. destruct a2; simpl. - + iIntros "!>" (v p1d). iDestruct 1 as (p1') "[Hpc #Hp1d]". - iDestruct ("H" with "Hpc") as (p2') "[H Hpc]". - iDestruct ("IH" with "H") as "H". - iExists (iProto_dual p2'). iSplitR "Hpc"; [|by auto]. by iRewrite "Hp1d". - + iIntros "!>" (v1 v2 p1d p2d). - iDestruct 1 as (p1') "[Hpc1 #Hp1d]". iDestruct 1 as (p2') "[Hpc2 #Hp2d]". - iDestruct ("H" with "Hpc2 Hpc1") as (pc1' pc2' pt) "(H1 & H2 & Hpc1 & Hpc2)". + destruct (iProto_case p1) as [->|([]&m1&->)]. + - iMod (iProto_le_end_inv with "H") as "H". + iRewrite "H". iApply iProto_le_refl. + - iDestruct (iProto_le_send_inv with "H") as (a2 m2) "[>Hp2 H]". + iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message). + destruct a2; simpl. + + iApply iProto_le_recv. iIntros (v p1d). + iDestruct 1 as (p1') "[Hm1 #Hp1d]". + iMod ("H" with "Hm1") as (p2') "[H Hm2]". + iDestruct ("IH" with "H") as "H". iIntros "!>". iExists (iProto_dual p2'). + iSplitL "H"; [iIntros "!>"; by iRewrite "Hp1d"|]. simpl; auto. + + iApply iProto_le_swap. iIntros (v1 p1d v2 p2d). + iDestruct 1 as (p1') "[Hm1 #Hp1d]". iDestruct 1 as (p2') "[Hm2 #Hp2d]". + iMod ("H" with "Hm2 Hm1") as (m1' m2' pt) "(H1 & H2 & Hm1 & Hm2)". iDestruct ("IH" with "H1") as "H1". iDestruct ("IH" with "H2") as "H2 {IH}". - rewrite !iProto_dual_message' /=. iExists _, _, (iProto_dual pt). - iSplitL "H2"; [by iRewrite "Hp1d"|]. iSplitL "H1"; [by iRewrite "Hp2d"|]. - iSplitL "Hpc2"; simpl; auto. - - iDestruct (iProto_le_recv_inv with "H") as (pc2) "[Hp2 H]". - iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message' /=). - rewrite iProto_le_unfold; iRight. - iExists _, _, _, _; do 2 (iSplit; [done|]); simpl. - iIntros "!>" (v p2d). iDestruct 1 as (p2') "[Hpc #Hp2d]". - iDestruct ("H" with "Hpc") as (p1') "[H Hpc]". - iDestruct ("IH" with "H") as "H". - iExists (iProto_dual p1'). iSplitR "Hpc"; [|by auto]. by iRewrite "Hp2d". + rewrite !iProto_dual_message /=. iIntros "!>". iExists _, _, (iProto_dual pt). + iSplitL "H2"; [iIntros "!>"; by iRewrite "Hp1d"|]. + iSplitL "H1"; [iIntros "!>"; by iRewrite "Hp2d"|]. + iSplitL "Hm2"; simpl; auto. + - iDestruct (iProto_le_recv_inv with "H") as (m2) "[>Hp2 H]". + iRewrite "Hp2"; clear p2. iEval (rewrite !iProto_dual_message /=). + iApply iProto_le_send. iIntros (v p2d). + iDestruct 1 as (p2') "[Hm2 #Hp2d]". + iMod ("H" with "Hm2") as (p1') "[H Hm1]". + iDestruct ("IH" with "H") as "H". iIntros "!>". iExists (iProto_dual p1'). + iSplitL "H"; [iIntros "!>"; by iRewrite "Hp2d"|]. simpl; auto. Qed. - Lemma iProto_le_dual_l p1 p2 : - iProto_le (iProto_dual p2) p1 -∗ iProto_le (iProto_dual p1) p2. + Lemma iProto_le_dual_l p1 p2 : iProto_dual p2 ⊑ p1 -∗ iProto_dual p1 ⊑ p2. Proof. iIntros "H". iEval (rewrite -(involutive iProto_dual p2)). by iApply iProto_le_dual. Qed. - Lemma iProto_le_dual_r p1 p2 : - iProto_le p2 (iProto_dual p1) -∗ iProto_le p1 (iProto_dual p2). + Lemma iProto_le_dual_r p1 p2 : p2 ⊑ iProto_dual p1 -∗ p1 ⊑ iProto_dual p2. Proof. iIntros "H". iEval (rewrite -(involutive iProto_dual p1)). by iApply iProto_le_dual. Qed. Lemma iProto_le_app p1 p2 p3 p4 : - iProto_le p1 p2 -∗ iProto_le p3 p4 -∗ iProto_le (p1 <++> p3) (p2 <++> p4). + p1 ⊑ p2 -∗ p3 ⊑ p4 -∗ p1 <++> p3 ⊑ p2 <++> p4. Proof. iIntros "H1 H2". iLöb as "IH" forall (p1 p2 p3 p4). - destruct (proto_case p2) as [->|([]&pc2&->)]. - - iRewrite (iProto_le_end_inv with "H1"). by rewrite !iProto_app_end'. - - iDestruct (iProto_le_send_inv with "H1") as (a1 pc1) "[Hp1 H1]". - iRewrite "Hp1"; clear p1. - rewrite !iProto_app_message'. iEval (rewrite iProto_le_unfold). - iRight. iExists _, _, _, _; do 2 (iSplit; [done|]). destruct a1; simpl. - + iIntros "!>" (v p24). iDestruct 1 as (p2') "[Hpc #Hp24]". - iDestruct ("H1" with "Hpc") as (p1') "[H1 Hpc]". - iExists (p1' <++> p3)%proto. iSplitR "Hpc"; [|eauto]. - iRewrite "Hp24". by iApply ("IH" with "H1"). - + iIntros "!>" (v1 v2 p13 p24). - iDestruct 1 as (p1') "[Hpc1 #Hp13]"; iDestruct 1 as (p2') "[Hpc2 #Hp24]". - iDestruct ("H1" with "Hpc1 Hpc2") as (pc1' pc2' pt) "(H1 & H1' & Hpc1 & Hpc2)". - iExists (iProto_map_app_cont (flip iProto_app p3) ∘ pc1'), - (iProto_map_app_cont (flip iProto_app p3) ∘ pc2'), (pt <++> p3)%proto. - rewrite -!iProto_app_message' /=. iSplitL "H1". - { iRewrite "Hp13". iApply ("IH" with "H1"). iApply iProto_le_refl. } + destruct (iProto_case p2) as [->|([]&m2&->)]. + - iMod (iProto_le_end_inv with "H1") as "H1". + iRewrite "H1". by rewrite !left_id. + - iDestruct (iProto_le_send_inv with "H1") as (a1 m1) "[>Hp1 H1]". + iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. destruct a1; simpl. + + iApply iProto_le_send. iIntros (v p24). + iDestruct 1 as (p2') "[Hm2 #Hp24]". + iMod ("H1" with "Hm2") as (p1') "[H1 Hm1]". + iIntros "!>". iExists (p1' <++> p3). iSplitR "Hm1"; [|by simpl; eauto]. + iIntros "!>". iRewrite "Hp24". by iApply ("IH" with "H1"). + + iApply iProto_le_swap. iIntros (v1 v2 p13 p24). + iDestruct 1 as (p1') "[Hm1 #Hp13]". iDestruct 1 as (p2') "[Hm2 #Hp24]". + iSpecialize ("H1" with "Hm1 Hm2"). + iMod "H1" as (m1' m2' pt) "(H1 & H1' & Hm1 & Hm2)". + iIntros "!>". iExists (m1' <++> p3)%msg, (m2' <++> p3)%msg, (pt <++> p3). + rewrite -!iProto_app_message /=. iSplitL "H1". + { iIntros "!>". iRewrite "Hp13". iApply ("IH" with "H1"). iApply iProto_le_refl. } iSplitL "H2 H1'". - { iRewrite "Hp24". iApply ("IH" with "H1' H2"). } - iSplitL "Hpc1"; auto. - - iDestruct (iProto_le_recv_inv with "H1") as (pc1) "[Hp1 H1]". - iRewrite "Hp1"; clear p1. - rewrite !iProto_app_message'. iEval (rewrite iProto_le_unfold). - iRight. iExists _, _, _, _; do 2 (iSplit; [done|]); simpl. - iIntros "!>" (v p13). iDestruct 1 as (p1') "[Hpc #Hp13]". - iDestruct ("H1" with "Hpc") as (p2'') "[H1 Hpc]". - iExists (p2'' <++> p4)%proto. iSplitR "Hpc"; [|eauto]. - iRewrite "Hp13". by iApply ("IH" with "H1"). + { iIntros "!>". iRewrite "Hp24". iApply ("IH" with "H1' H2"). } + iSplitL "Hm1"; auto. + - iDestruct (iProto_le_recv_inv with "H1") as (m1) "[>Hp1 H1]". + iRewrite "Hp1"; clear p1. rewrite !iProto_app_message. iApply iProto_le_recv. + iIntros (v p13). iDestruct 1 as (p1') "[Hm1 #Hp13]". + iMod ("H1" with "Hm1") as (p2'') "[H1 Hm2]". + iIntros "!>". iExists (p2'' <++> p4). iSplitR "Hm2"; [|by simpl; eauto]. + iIntros "!>". iRewrite "Hp13". by iApply ("IH" with "H1"). Qed. (** ** Lemmas about the auxiliary definitions and invariants *) @@ -797,7 +911,7 @@ Section proto. rewrite /iProto_unfold. assert (∀ p, proto_map iProp_unfold iProp_fold (proto_map iProp_fold iProp_unfold p) ≡ p) as help. { intros p''. rewrite -proto_map_compose -{2}(proto_map_id p''). - apply proto_map_ext=> // pc /=; by rewrite iProp_fold_unfold. } + apply proto_map_ext=> // m /=; by rewrite iProp_fold_unfold. } rewrite -{2}(help p). iRewrite "H✓". by rewrite help. Qed. @@ -824,17 +938,17 @@ Section proto. (∃ p, ⌜ vsl = [] ⌠∗ ⌜ vsr = [] ⌠∗ - iProto_le p pl ∗ - iProto_le (iProto_dual p) pr) ∨ - (∃ vl vsl' pc pr', + p ⊑ pl ∗ + iProto_dual p ⊑ pr) ∨ + (∃ vl vsl' m pr', ⌜ vsl = vl :: vsl' ⌠∗ - iProto_le (proto_message Recv pc) pr ∗ - pc vl pr' ∗ + (<?> m) ⊑ pr ∗ + m vl (Next pr') ∗ iProto_interp vsl' vsr pl pr') ∨ - (∃ vr vsr' pc pl', + (∃ vr vsr' m pl', ⌜ vsr = vr :: vsr' ⌠∗ - iProto_le (proto_message Recv pc) pl ∗ - pc vr pl' ∗ + (<?> m) ⊑ pl ∗ + m vr (Next pl') ∗ iProto_interp vsl vsr' pl' pr). Proof. rewrite {1}/iProto_interp. destruct vsl as [|vl vsl]; simpl. @@ -867,16 +981,16 @@ Section proto. rewrite !iProto_interp_unfold. iIntros "[H|[H|H]]". - iClear "IH". iDestruct "H" as (p -> ->) "[Hp Hp'] /=". iLeft. iExists (iProto_dual p). rewrite involutive. iFrame; auto. - - iDestruct "H" as (vl vsl' pc' pr' ->) "(Hpr & Hpc' & H)". - iRight; iRight. iExists vl, vsl', pc', pr'. iSplit; [done|]; iFrame. + - iDestruct "H" as (vl vsl' m' pr' ->) "(Hpr & Hm' & H)". + iRight; iRight. iExists vl, vsl', m', pr'. iSplit; [done|]; iFrame. iApply ("IH" with "[%] [//] H"); simpl; lia. - - iDestruct "H" as (vr vsr' pc' pl' ->) "(Hpl & Hpc' & H)". - iRight; iLeft. iExists vr, vsr', pc', pl'. iSplit; [done|]; iFrame. + - iDestruct "H" as (vr vsr' m' pl' ->) "(Hpl & Hm' & H)". + iRight; iLeft. iExists vr, vsr', m', pl'. iSplit; [done|]; iFrame. iApply ("IH" with "[%] [//] H"); simpl; lia. Qed. Lemma iProto_interp_le_l vsl vsr pl pl' pr : - iProto_interp vsl vsr pl pr -∗ iProto_le pl pl' -∗ iProto_interp vsl vsr pl' pr. + iProto_interp vsl vsr pl pr -∗ pl ⊑ pl' -∗ iProto_interp vsl vsr pl' pr. Proof. remember (length vsl + length vsr) as n eqn:Hn. iInduction (lt_wf n) as [n _] "IH" forall (vsl vsr pl pr Hn); subst. @@ -884,76 +998,75 @@ Section proto. - iClear "IH". iDestruct "H" as (p -> ->) "[Hp Hp'] /=". iLeft. iExists p. do 2 (iSplit; [done|]). iFrame "Hp'". by iApply (iProto_le_trans with "Hp"). - - iDestruct "H" as (vl vsl' pc' pr' ->) "(Hpr & Hpc' & H)". - iRight; iLeft. iExists vl, vsl', pc', pr'. iSplit; [done|]; iFrame. + - iDestruct "H" as (vl vsl' m' pr' ->) "(Hpr & Hm' & H)". + iRight; iLeft. iExists vl, vsl', m', pr'. iSplit; [done|]; iFrame. iApply ("IH" with "[%] [//] H Hle"); simpl; lia. - - iClear "IH". iDestruct "H" as (vr vsr' pc' pl'' ->) "(Hpl & Hpc' & H)". - iRight; iRight. iExists vr, vsr', pc', pl''. iSplit; [done|]; iFrame. + - iClear "IH". iDestruct "H" as (vr vsr' m' pl'' ->) "(Hpl & Hm' & H)". + iRight; iRight. iExists vr, vsr', m', pl''. iSplit; [done|]; iFrame. by iApply (iProto_le_trans with "Hpl"). Qed. Lemma iProto_interp_le_r vsl vsr pl pr pr' : - iProto_interp vsl vsr pl pr -∗ iProto_le pr pr' -∗ iProto_interp vsl vsr pl pr'. + iProto_interp vsl vsr pl pr -∗ pr ⊑ pr' -∗ iProto_interp vsl vsr pl pr'. Proof. iIntros "H Hle". iApply iProto_interp_flip. iApply (iProto_interp_le_l with "[H] Hle"). by iApply iProto_interp_flip. Qed. - Lemma iProto_interp_send vl pcl vsl vsr pl pr pl' : + Lemma iProto_interp_send vl ml vsl vsr pl pr pl' : iProto_interp vsl vsr pl pr -∗ - iProto_le pl (proto_message Send pcl) -∗ - pcl vl pl' -∗ + pl ⊑ (<!> ml) -∗ + ml vl (Next pl') -∗ â–·^(length vsr) iProto_interp (vsl ++ [vl]) vsr pl' pr. Proof. iIntros "H Hle". iDestruct (iProto_interp_le_l with "H Hle") as "H". - clear pl. iIntros "Hpcl". remember (length vsl + length vsr) as n eqn:Hn. - iInduction (lt_wf n) as [n _] "IH" forall (pcl vsl vsr pr pl' Hn); subst. + clear pl. iIntros "Hml". remember (length vsl + length vsr) as n eqn:Hn. + iInduction (lt_wf n) as [n _] "IH" forall (ml vsl vsr pr pl' Hn); subst. rewrite {1}iProto_interp_unfold. iDestruct "H" as "[H|[H|H]]". - iClear "IH". iDestruct "H" as (p -> ->) "[Hp Hp'] /=". iDestruct (iProto_le_dual with "Hp") as "Hp". iDestruct (iProto_le_trans with "Hp Hp'") as "Hp". - rewrite iProto_dual_message' /=. + rewrite iProto_dual_message /=. iApply iProto_interp_unfold. iRight; iLeft. iExists vl, [], _, (iProto_dual pl'). iSplit; [done|]. iFrame "Hp"; simpl. iSplitL; [by auto|]. iApply iProto_interp_nil. - - iDestruct "H" as (vl' vsl' pc' pr' ->) "(Hpr & Hpc' & H)". - iDestruct ("IH" with "[%] [//] H Hpcl") as "H"; [simpl; lia|]. + - iDestruct "H" as (vl' vsl' m' pr' ->) "(Hpr & Hm' & H)". + iDestruct ("IH" with "[%] [//] H Hml") as "H"; [simpl; lia|]. iNext. iApply (iProto_interp_le_r with "[-Hpr] Hpr"); clear pr. iApply iProto_interp_unfold. iRight; iLeft. - iExists vl', (vsl' ++ [vl]), pc', pr'. iFrame. + iExists vl', (vsl' ++ [vl]), m', pr'. iFrame. iSplit; [done|]. iApply iProto_le_refl. - - iDestruct "H" as (vr' vsr' pc' pl'' ->) "(Hle & Hpcl' & H) /=". - iDestruct (iProto_le_send_inv with "Hle") as (a pcl') "[Hpc Hle]". - iDestruct (proto_message_equivI with "Hpc") as (<-) "Hpc". - iIntros "!>". iRewrite ("Hpc" $! vr' pl'') in "Hpcl'"; clear pc'. - iDestruct ("Hle" with "Hpcl' Hpcl") - as (pc1 pc2 pt) "(Hpl'' & Hpl' & Hpc1 & Hpc2)". + - iDestruct "H" as (vr' vsr' m' pl'' ->) "(Hle & Hml' & H) /=". + iDestruct (iProto_le_send_inv with "Hle") as (a ml') "[>Hm Hle]". + iDestruct (iProto_message_equivI with "Hm") as (<-) "Hm". + iSpecialize ("Hle" with "[Hml' Hm] Hml"). + { by iRewrite ("Hm" $! vr' (Next pl'')) in "Hml'". } + iMod "Hle" as (m1 m2 pt) "(Hpl'' & Hpl' & Hm1 & Hm2)". iIntros "!>". iDestruct (iProto_interp_le_l with "H Hpl''") as "H". - iDestruct ("IH" with "[%] [//] H Hpc1") as "H"; [simpl; lia|..]. + iDestruct ("IH" with "[%] [//] H Hm1") as "H"; [simpl; lia|..]. iNext. iApply iProto_interp_unfold. iRight; iRight. iExists vr', vsr', _, pt. iSplit; [done|]. by iFrame. Qed. - Lemma iProto_interp_recv vl vsl vsr pl pr pcr : + Lemma iProto_interp_recv vl vsl vsr pl pr mr : iProto_interp (vl :: vsl) vsr pl pr -∗ - iProto_le pr (proto_message Recv pcr) -∗ - â–· ∃ pr, pcr vl pr ∗ iProto_interp vsl vsr pl pr. + pr ⊑ (<?> mr) -∗ + â—‡ ∃ pr, mr vl (Next pr) ∗ â–· iProto_interp vsl vsr pl pr. Proof. iIntros "H Hle". iDestruct (iProto_interp_le_r with "H Hle") as "H". clear pr. remember (length vsr) as n eqn:Hn. iInduction (lt_wf n) as [n _] "IH" forall (vsr pl Hn); subst. rewrite !iProto_interp_unfold. iDestruct "H" as "[H|[H|H]]". - iClear "IH". iDestruct "H" as (p [=]) "_". - - iClear "IH". iDestruct "H" as (vl' vsl' pc' pr' [= -> ->]) "(Hpr & Hpc' & Hinterp)". - iDestruct (iProto_le_recv_inv with "Hpr") as (pc'') "[Hpc Hpr]". - iDestruct (proto_message_equivI with "Hpc") as (_) "{Hpc} #Hpc". - iIntros "!>". - iDestruct ("Hpr" $! vl' pr' with "[Hpc']") as (pr'') "[Hler Hpr]". - { by iRewrite -("Hpc" $! vl' pr'). } - iExists pr''. iFrame "Hpr". - by iApply (iProto_interp_le_r with "Hinterp"). - - iDestruct "H" as (vr vsr' pc' pl'' ->) "(Hpl & Hpc' & Hinterp)". - iDestruct ("IH" with "[%] [//] Hinterp") as (pr) "[Hpc Hinterp]"; [simpl; lia|]. - iIntros "!>". iExists pr. iFrame "Hpc". + - iClear "IH". iDestruct "H" as (vl' vsl' m' pr' [= -> ->]) "(Hpr & Hm' & H)". + iDestruct (iProto_le_recv_inv with "Hpr") as (m'') "[>Hm Hpr]". + iDestruct (iProto_message_equivI with "Hm") as (_) "{Hm} #Hm". + iMod ("Hpr" $! vl' pr' with "[Hm']") as (pr'') "[Hler Hpr]". + { by iRewrite -("Hm" $! vl' (Next pr')). } + iIntros "!>". iExists pr''. iFrame "Hpr". + by iApply (iProto_interp_le_r with "H"). + - iDestruct "H" as (vr vsr' m' pl'' ->) "(Hpl & Hm' & H)". + iMod ("IH" with "[%] [//] H") as (pr) "[Hm H]"; [simpl; lia|]. + iIntros "!>". iExists pr. iFrame "Hm". iApply iProto_interp_unfold. iRight; iRight. eauto 20 with iFrame. Qed. @@ -963,7 +1076,7 @@ Section proto. Proof. apply (ne_proper _). Qed. Lemma iProto_own_le γ s p1 p2 : - iProto_own γ s p1 -∗ â–· iProto_le p1 p2 -∗ iProto_own γ s p2. + iProto_own γ s p1 -∗ â–· (p1 ⊑ p2) -∗ iProto_own γ s p2. Proof. iDestruct 1 as (p1') "[Hle H]". iIntros "Hle'". iExists p1'. iFrame "H". by iApply (iProto_le_trans with "Hle"). @@ -985,91 +1098,157 @@ Section proto. iSplitL "Hâ—¯l"; iExists _; iFrame; iApply iProto_le_refl. Qed. - Lemma iProto_send_l {TT} γ (pc : TT → V * iProp Σ * iProto Σ V) (x : TT) vsr vsl : + Lemma iProto_send_l γ m vsr vsl vl p : iProto_ctx γ vsl vsr -∗ - iProto_own γ Left (iProto_message Send pc) -∗ - (pc x).1.2 ==∗ - â–·^(length vsr) iProto_ctx γ (vsl ++ [(pc x).1.1]) vsr ∗ - iProto_own γ Left (pc x).2. + iProto_own γ Left (<!> m) -∗ + m vl (Next p) ==∗ + â–·^(length vsr) iProto_ctx γ (vsl ++ [vl]) vsr ∗ + iProto_own γ Left p. Proof. - rewrite iProto_message_eq. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (p) "[Hle Hâ—¯]". iIntros "Hpc". + iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". + iDestruct 1 as (pl') "[Hle Hâ—¯]". iIntros "Hm". iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯") as "#Hp". - iAssert (â–· iProto_le pl (iProto_message_def Send pc))%I + iAssert (â–· (pl ⊑ <!> m))%I with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). - iDestruct (iProto_interp_send ((pc x).1.1) with "Hinterp Hle [Hpc]") as "Hinterp". + iDestruct (iProto_interp_send with "Hinterp Hle [Hm]") as "Hinterp". { simpl. auto. } - iMod (iProto_own_auth_update _ _ _ _ (pc x).2 with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". iIntros "!>". iSplitR "Hâ—¯". - - iIntros "!>". iExists (pc x).2, pr. iFrame. - - iExists (pc x).2. iFrame. iApply iProto_le_refl. + - iIntros "!>". iExists p, pr. iFrame. + - iExists p. iFrame. iApply iProto_le_refl. Qed. - Lemma iProto_send_r {TT} γ (pc : TT → V * iProp Σ * iProto Σ V) (x : TT) vsr vsl : + Lemma iProto_send_r γ m vsr vsl vr p : iProto_ctx γ vsl vsr -∗ - iProto_own γ Right (iProto_message Send pc) -∗ - (pc x).1.2 ==∗ - â–·^(length vsl) iProto_ctx γ vsl (vsr ++ [(pc x).1.1]) ∗ - iProto_own γ Right (pc x).2. + iProto_own γ Right (<!> m) -∗ + m vr (Next p) ==∗ + â–·^(length vsl) iProto_ctx γ vsl (vsr ++ [vr]) ∗ + iProto_own γ Right p. Proof. - rewrite iProto_message_eq. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". - iDestruct 1 as (p) "[Hle Hâ—¯]". iIntros "Hpc". + iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". + iDestruct 1 as (pr') "[Hle Hâ—¯]". iIntros "Hm". iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iAssert (â–· iProto_le pr (iProto_message_def Send pc))%I + iAssert (â–· (pr ⊑ <!> m))%I with "[Hle]" as "{Hp} Hle"; first (iNext; by iRewrite "Hp"). iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_send ((pc x).1.1) with "Hinterp Hle [Hpc]") as "Hinterp". + iDestruct (iProto_interp_send with "Hinterp Hle [Hm]") as "Hinterp". { simpl. auto. } - iMod (iProto_own_auth_update _ _ _ _ (pc x).2 with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". + iMod (iProto_own_auth_update _ _ _ _ p with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". iIntros "!>". iSplitR "Hâ—¯". - - iIntros "!>". iExists pl, (pc x).2. iFrame. by iApply iProto_interp_flip. - - iExists (pc x).2. iFrame. iApply iProto_le_refl. + - iIntros "!>". iExists pl, p. iFrame. by iApply iProto_interp_flip. + - iExists p. iFrame. iApply iProto_le_refl. Qed. - Lemma iProto_recv_l {TT} γ (pc : TT → V * iProp Σ * iProto Σ V) vr vsr vsl : + Lemma iProto_recv_l γ m vr vsr vsl : iProto_ctx γ vsl (vr :: vsr) -∗ - iProto_own γ Left (iProto_message Recv pc) ==∗ - â–· â—‡ ∃ (x : TT), - ⌜ vr = (pc x).1.1 ⌠∗ + iProto_own γ Left (<?> m) ==∗ + â–· â—‡ ∃ p, iProto_ctx γ vsl vsr ∗ - iProto_own γ Left (pc x).2 ∗ - â–· (pc x).1.2. + iProto_own γ Left p ∗ + m vr (Next p). Proof. - rewrite iProto_message_eq. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". + iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". iDestruct 1 as (p) "[Hle Hâ—¯]". iDestruct (iProto_own_auth_agree with "Hâ—l Hâ—¯") as "#Hp". iDestruct (iProto_interp_flip with "Hinterp") as "Hinterp". - iDestruct (iProto_interp_recv with "Hinterp [Hle]") as (q) "[Hpc Hinterp]". + iDestruct (iProto_interp_recv with "Hinterp [Hle]") as (q) "[Hm Hinterp]". { iNext. by iRewrite "Hp". } iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—l Hâ—¯") as "[Hâ—l Hâ—¯]". - iIntros "!> !> /=". - iMod (bi.later_exist_except_0 with "Hpc") as (x) "(>-> & Hpc & #Hq)". - iIntros "!>". iExists x. iSplit; [done|]. iFrame "Hpc". iSplitR "Hâ—¯". + iIntros "!> !> /=". iMod "Hm"; iMod "Hinterp". iIntros "!>". + iExists q. iFrame "Hm". iSplitR "Hâ—¯". - iExists q, pr. iFrame. by iApply iProto_interp_flip. - - iExists q. iIntros "{$Hâ—¯} !>". iRewrite "Hq". iApply iProto_le_refl. + - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. Qed. - Lemma iProto_recv_r {TT} γ (pc : TT → V * iProp Σ * iProto Σ V) vl vsr vsl : + Lemma iProto_recv_r γ m vl vsr vsl : iProto_ctx γ (vl :: vsl) vsr -∗ - iProto_own γ Right (iProto_message Recv pc) ==∗ - â–· â—‡ ∃ (x : TT), - ⌜ vl = (pc x).1.1 ⌠∗ + iProto_own γ Right (<?> m) ==∗ + â–· â—‡ ∃ p, iProto_ctx γ vsl vsr ∗ - iProto_own γ Right (pc x).2 ∗ - â–· (pc x).1.2. + iProto_own γ Right p ∗ + m vl (Next p). Proof. - rewrite iProto_message_eq. iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". + iDestruct 1 as (pl pr) "(Hâ—l & Hâ—r & Hinterp)". iDestruct 1 as (p) "[Hle Hâ—¯]". iDestruct (iProto_own_auth_agree with "Hâ—r Hâ—¯") as "#Hp". - iDestruct (iProto_interp_recv with "Hinterp [Hle]") as (q) "[Hpc Hinterp]". + iDestruct (iProto_interp_recv with "Hinterp [Hle]") as (q) "[Hm Hinterp]". { iNext. by iRewrite "Hp". } iMod (iProto_own_auth_update _ _ _ _ q with "Hâ—r Hâ—¯") as "[Hâ—r Hâ—¯]". - iIntros "!> !> /=". - iMod (bi.later_exist_except_0 with "Hpc") as (x) "(>-> & Hpc & #Hq)". - iIntros "!>". iExists x. iSplit; [done|]. iFrame "Hpc". iSplitR "Hâ—¯". + iIntros "!> !> /=". iMod "Hm"; iMod "Hinterp". iIntros "!>". + iExists q. iFrame "Hm". iSplitR "Hâ—¯". - iExists pl, q. iFrame. - - iExists q. iIntros "{$Hâ—¯} !>". iRewrite "Hq". iApply iProto_le_refl. + - iExists q. iIntros "{$Hâ—¯} !>". iApply iProto_le_refl. + Qed. + + (** The instances below make it possible to use the tactics [iIntros], + [iExist], [iSplitL]/[iSplitR], [iFrame] and [iModIntro] on [iProto_le] goals. *) + Global Instance iProto_le_from_forall_l {A} a (m1 : A → iMsg Σ V) m2 : + FromForall ((<? x> m1 x) ⊑ (<a> m2)) (λ x, (<?> m1 x) ⊑ (<a> m2))%I | 10. + Proof. apply iProto_le_exist_elim_l. Qed. + Global Instance iProto_le_from_forall_r {A} a m1 (m2 : A → iMsg Σ V) : + FromForall ((<a> m1) ⊑ (<! x> m2 x)) (λ x, (<a> m1) ⊑ (<!> m2 x))%I | 11. + Proof. apply iProto_le_exist_elim_r. Qed. + + Global Instance iProto_le_from_wand_l a m v P p : + TCIf (TCEq P True%I) False TCTrue → + FromWand ((<?> MSG v {{ P }}; p) ⊑ (<a> m)) P ((<?> MSG v; p) ⊑ (<a> m)) | 10. + Proof. intros _. apply iProto_le_payload_elim_l. Qed. + Global Instance iProto_le_from_wand_r a m v P p : + FromWand ((<a> m) ⊑ (<!> MSG v {{ P }}; p)) P ((<a> m) ⊑ (<!> MSG v; p)) | 11. + Proof. apply iProto_le_payload_elim_r. Qed. + + Global Instance iProto_le_from_exist_l {A} (m : A → iMsg Σ V) p : + FromExist ((<! x> m x) ⊑ p) (λ a, (<!> m a) ⊑ p)%I | 10. + Proof. + rewrite /FromExist. iDestruct 1 as (x) "H". + iApply (iProto_le_trans with "[] H"). iApply iProto_le_exist_intro_l. + Qed. + Global Instance iProto_le_from_exist_r {A} (m : A → iMsg Σ V) p : + FromExist (p ⊑ <? x> m x) (λ a, p ⊑ (<?> m a))%I | 11. + Proof. + rewrite /FromExist. iDestruct 1 as (x) "H". + iApply (iProto_le_trans with "H"). iApply iProto_le_exist_intro_r. + Qed. + + Global Instance iProto_le_from_sep_l m v P p : + FromSep ((<!> MSG v {{ P }}; p) ⊑ (<!> m)) P ((<!> MSG v; p) ⊑ (<!> m)) | 10. + Proof. + rewrite /FromSep. iIntros "[HP H]". + iApply (iProto_le_trans with "[HP] H"). by iApply iProto_le_payload_intro_l. Qed. + Global Instance iProto_le_from_sep_r m v P p : + FromSep ((<?> m) ⊑ (<?> MSG v {{ P }}; p)) P ((<?> m) ⊑ (<?> MSG v; p)) | 11. + Proof. + rewrite /FromSep. iIntros "[HP H]". + iApply (iProto_le_trans with "H"). by iApply iProto_le_payload_intro_r. + Qed. + + Global Instance iProto_le_frame_l q m v R P Q p : + Frame q R P Q → + Frame q R ((<!> MSG v {{ P }}; p) ⊑ (<!> m)) + ((<!> MSG v {{ Q }}; p) ⊑ (<!> m)) | 10. + Proof. + rewrite /Frame /=. iIntros (HP) "[HR H]". + iApply (iProto_le_trans with "[HR] H"). iApply iProto_le_payload_elim_r. + iIntros "HQ". iApply iProto_le_payload_intro_l. iApply HP; iFrame. + Qed. + Global Instance iProto_le_frame_r q m v R P Q p : + Frame q R P Q → + Frame q R ((<?> m) ⊑ (<?> MSG v {{ P }}; p)) + ((<?> m) ⊑ (<?> MSG v {{ Q }}; p)) | 11. + Proof. + rewrite /Frame /=. iIntros (HP) "[HR H]". + iApply (iProto_le_trans with "H"). iApply iProto_le_payload_elim_l. + iIntros "HQ". iApply iProto_le_payload_intro_r. iApply HP; iFrame. + Qed. + + Global Instance iProto_le_from_modal a v p1 p2 : + FromModal (modality_instances.modality_laterN 1) (p1 ⊑ p2) + ((<a> MSG v; p1) ⊑ (<a> MSG v; p2)) (p1 ⊑ p2). + Proof. apply iProto_le_base. Qed. End proto. Typeclasses Opaque iProto_ctx iProto_own. + +Hint Extern 0 (environments.envs_entails _ (?x ⊑ ?y)) => + first [is_evar x; fail 1 | is_evar y; fail 1|iApply iProto_le_refl] : core. diff --git a/theories/channel/proto_model.v b/theories/channel/proto_model.v index 0a0a5cc..b21f06e 100644 --- a/theories/channel/proto_model.v +++ b/theories/channel/proto_model.v @@ -8,7 +8,7 @@ Important: This file should not be used directly, but rather the wrappers in Dependent Separation Protocols are modeled as the solution of the following recursive domain equation: -[proto = 1 + (action * â–¶ (V → proto → PROP))] +[proto = 1 + (action * (V → â–¶ proto → PROP))] Here, the left-hand side of the sum is used for the terminated process, while the right-hand side is used for the communication constructors. The type @@ -16,7 +16,7 @@ the right-hand side is used for the communication constructors. The type [Recv]. Compared to having an additional sum in [proto], this makes it possible to factorize the code in a better way. -The remainder [â–¶ (V → proto → PROP)] is a predicate that ranges over the +The remainder [V → â–¶ proto → PROP] is a predicate that ranges over the communicated value [V] and the tail protocol [proto]. Note that to solve this recursive domain equation using Iris's COFE solver, the recursive occurrence of [proto] appear under the later [â–¶]. @@ -49,9 +49,9 @@ Module Export action. End action. Definition proto_auxO (V : Type) (PROP : ofeT) (A : ofeT) : ofeT := - optionO (prodO actionO (laterO (V -d> A -n> PROP))). + optionO (prodO actionO (V -d> laterO A -n> PROP)). Definition proto_auxOF (V : Type) (PROP : ofeT) : oFunctor := - optionOF (actionO * â–¶ (V -d> ∙ -n> PROP)). + optionOF (actionO * (V -d> â–¶ ∙ -n> PROP)). Definition proto_result (V : Type) := result_2 (proto_auxOF V). Definition proto (V : Type) (PROPn PROP : ofeT) `{!Cofe PROPn, !Cofe PROP} : ofeT := @@ -77,23 +77,13 @@ Proof. apply (ofe_iso_21 proto_iso). Qed. Definition proto_end {V} `{!Cofe PROPn, !Cofe PROP} : proto V PROPn PROP := proto_fold None. Definition proto_message {V} `{!Cofe PROPn, !Cofe PROP} (a : action) - (pc : V → proto V PROP PROPn -n> PROP) : proto V PROPn PROP := - proto_fold (Some (a, Next pc)). + (pc : V → laterO (proto V PROP PROPn) -n> PROP) : proto V PROPn PROP := + proto_fold (Some (a, pc)). -Instance proto_message_contractive {V} `{!Cofe PROPn, !Cofe PROP} a n : - Proper (pointwise_relation V (dist_later n) ==> dist n) - (proto_message (PROPn:=PROPn) (PROP:=PROP) a). -Proof. - intros c1 c2 Hc. rewrite /proto_message. f_equiv. do 2 constructor=>//=. - apply Next_contractive. by destruct n. -Qed. Instance proto_message_ne {V} `{!Cofe PROPn, !Cofe PROP} a n : Proper (pointwise_relation V (dist n) ==> dist n) (proto_message (PROPn:=PROPn) (PROP:=PROP) a). -Proof. - intros c1 c2 Hc. apply proto_message_contractive=> v. - by destruct n; [|apply dist_S]. -Qed. +Proof. intros c1 c2 Hc. rewrite /proto_message. f_equiv. by repeat constructor. Qed. Instance proto_message_proper {V} `{!Cofe PROPn, !Cofe PROP} a : Proper (pointwise_relation V (≡) ==> (≡)) (proto_message (PROPn:=PROPn) (PROP:=PROP) a). @@ -104,15 +94,14 @@ Lemma proto_case {V} `{!Cofe PROPn, !Cofe PROP} (p : proto V PROPn PROP) : Proof. destruct (proto_unfold p) as [[a pc]|] eqn:E; simpl in *; last first. - left. by rewrite -(proto_fold_unfold p) E. - - right. destruct (Next_uninj pc) as [pc' Hpc]. exists a, pc'. - by rewrite /proto_message -Hpc -E proto_fold_unfold. + - right. exists a, pc. by rewrite /proto_message -E proto_fold_unfold. Qed. Instance proto_inhabited {V} `{!Cofe PROPn, !Cofe PROP} : Inhabited (proto V PROPn PROP) := populate proto_end. Lemma proto_message_equivI {SPROP : sbi} {V} `{!Cofe PROPn, !Cofe PROP} a1 a2 pc1 pc2 : proto_message (V:=V) (PROPn:=PROPn) (PROP:=PROP) a1 pc1 ≡ proto_message a2 pc2 - ⊣⊢@{SPROP} ⌜ a1 = a2 ⌠∧ â–· (∀ v p', pc1 v p' ≡ pc2 v p'). + ⊣⊢@{SPROP} ⌜ a1 = a2 ⌠∧ (∀ v p', pc1 v p' ≡ pc2 v p'). Proof. trans (proto_unfold (proto_message a1 pc1) ≡ proto_unfold (proto_message a2 pc2) : SPROP)%I. { iSplit. @@ -120,7 +109,7 @@ Proof. - iIntros "Heq". rewrite -{2}(proto_fold_unfold (proto_message _ _)). iRewrite "Heq". by rewrite proto_fold_unfold. } rewrite /proto_message !proto_unfold_fold bi.option_equivI bi.prod_equivI /=. - rewrite bi.discrete_eq bi.later_equivI bi.discrete_fun_equivI. + rewrite bi.discrete_eq bi.discrete_fun_equivI. by setoid_rewrite bi.ofe_morO_equivI. Qed. Lemma proto_message_end_equivI {SPROP : sbi} {V} `{!Cofe PROPn, !Cofe PROP} a pc : @@ -137,13 +126,13 @@ Proof. by rewrite bi.internal_eq_sym proto_message_end_equivI. Qed. (** The eliminator [proto_elim x f p] is only well-behaved if the function [f] is contractive *) Definition proto_elim {V} `{!Cofe PROPn, !Cofe PROP} {A} - (x : A) (f : action → (V → proto V PROP PROPn -n> PROP) → A) + (x : A) (f : action → (V → laterO (proto V PROP PROPn) -n> PROP) → A) (p : proto V PROPn PROP) : A := - match proto_unfold p with None => x | Some (a, pc) => f a (later_car pc) end. + match proto_unfold p with None => x | Some (a, pc) => f a pc end. Lemma proto_elim_ne {V} `{!Cofe PROPn, !Cofe PROP} {A : ofeT} - (x : A) (f1 f2 : action → (V → proto V PROP PROPn -n> PROP) → A) p1 p2 n : - (∀ a pc1 pc2, (∀ v, dist_later n (pc1 v) (pc2 v)) → f1 a pc1 ≡{n}≡ f2 a pc2) → + (x : A) (f1 f2 : action → (V → laterO (proto V PROP PROPn) -n> PROP) → A) p1 p2 n : + (∀ a pc1 pc2, (∀ v, pc1 v ≡{n}≡ pc2 v) → f1 a pc1 ≡{n}≡ f2 a pc2) → p1 ≡{n}≡ p2 → proto_elim x f1 p1 ≡{n}≡ proto_elim x f2 p2. Proof. @@ -154,7 +143,7 @@ Proof. Qed. Lemma proto_elim_end {V} `{!Cofe PROPn, !Cofe PROP} {A : ofeT} - (x : A) (f : action → (V → proto V PROP PROPn -n> PROP) → A) : + (x : A) (f : action → (V → laterO (proto V PROP PROPn) -n> PROP) → A) : proto_elim x f proto_end ≡ x. Proof. rewrite /proto_elim /proto_end. @@ -162,14 +151,14 @@ Proof. by destruct (proto_unfold (proto_fold None)) as [[??]|] eqn:E; inversion Hfold. Qed. Lemma proto_elim_message {V} `{!Cofe PROPn, !Cofe PROP} {A : ofeT} - (x : A) (f : action → (V → proto V PROP PROPn -n> PROP) → A) + (x : A) (f : action → (V → laterO (proto V PROP PROPn) -n> PROP) → A) `{Hf : ∀ a, Proper (pointwise_relation _ (≡) ==> (≡)) (f a)} a pc : proto_elim x f (proto_message a pc) ≡ f a pc. Proof. rewrite /proto_elim /proto_message /=. pose proof (proto_unfold_fold (V:=V) (PROPn:=PROPn) - (PROP:=PROP) (Some (a, Next pc))) as Hfold. - destruct (proto_unfold (proto_fold (Some (a, Next pc)))) + (PROP:=PROP) (Some (a, pc))) as Hfold. + destruct (proto_unfold (proto_fold (Some (a, pc)))) as [[??]|] eqn:E; inversion Hfold as [?? [Ha Hc]|]; simplify_eq/=. by f_equiv=> v. Qed. @@ -178,12 +167,10 @@ Qed. Program Definition proto_map_aux {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'} (g : PROP -n> PROP') (rec : proto V PROP' PROPn' -n> proto V PROP PROPn) : proto V PROPn PROP -n> proto V PROPn' PROP' := λne p, - proto_elim proto_end (λ a pc, proto_message a (λ v, g â—Ž pc v â—Ž rec)) p. + proto_elim proto_end (λ a pc, proto_message a (λ v, g â—Ž pc v â—Ž laterO_map rec)) p. Next Obligation. intros V PROPn ? PROPn' ? PROP ? PROP' ? g rec n p1 p2 Hp. - apply proto_elim_ne=> // a pc1 pc2 Hpc. - apply proto_message_contractive; destruct n as [|n]=> // v p' /=. - do 2 f_equiv. apply Hpc. + apply proto_elim_ne=> // a pc1 pc2 Hpc. by repeat f_equiv. Qed. Instance proto_map_aux_contractive {V} @@ -191,8 +178,8 @@ Instance proto_map_aux_contractive {V} Contractive (proto_map_aux (V:=V) (PROPn:=PROPn) (PROPn':=PROPn') g). Proof. intros n rec1 rec2 Hrec p. simpl. apply proto_elim_ne=> // a pc1 pc2 Hpc. - apply proto_message_contractive; destruct n as [|n]=> // v p'; simpl in *. - by rewrite (Hrec p') (Hpc _ (rec2 _)). + f_equiv=> v p' /=. do 2 f_equiv; [done|]. + apply Next_contractive; destruct n as [|n]=> //=. Qed. Definition proto_map_aux_2 {V} @@ -234,7 +221,7 @@ Proof. by rewrite proto_map_unfold /proto_map_aux /= proto_elim_end. Qed. Lemma proto_map_message {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'} (gn : PROPn' -n> PROPn) (g : PROP -n> PROP') a pc : proto_map (V:=V) gn g (proto_message a pc) - ≡ proto_message a (λ v, g â—Ž pc v â—Ž proto_map g gn). + ≡ proto_message a (λ v, g â—Ž pc v â—Ž laterO_map (proto_map g gn)). Proof. rewrite proto_map_unfold /proto_map_aux /=. apply: proto_elim_message=> a' pc1 pc2 Hpc; f_equiv; solve_proper. @@ -251,8 +238,8 @@ Proof. PROPn ? PROPn' ? PROP ? PROP' ? gn1 gn2 g1 g2 p Hgn Hg /=. destruct (proto_case p) as [->|(a & pc & ->)]; [by rewrite !proto_map_end|]. rewrite !proto_map_message /=. - apply proto_message_contractive; destruct n as [|n]=> // v p' /=. - rewrite (dist_S _ _ _ (Hg _)) IH //; auto using dist_S with lia. + apply proto_message_ne=> // v p' /=. f_equiv; [done|]. f_equiv. + apply Next_contractive; destruct n as [|n]=> //=; auto using dist_S with lia. Qed. Lemma proto_map_ext {V} `{!Cofe PROPn, !Cofe PROPn', !Cofe PROP, !Cofe PROP'} (gn1 gn2 : PROPn' -n> PROPn) (g1 g2 : PROP -n> PROP') p : @@ -267,9 +254,8 @@ Proof. apply equiv_dist=> n. revert PROPn Hcn PROP Hc p. induction (lt_wf n) as [n _ IH]=> PROPn ? PROP ? p /=. destruct (proto_case p) as [->|(a & pc & ->)]; [by rewrite !proto_map_end|]. - rewrite !proto_map_message /=. - apply proto_message_contractive; destruct n as [|n]=> // v p' /=. - by rewrite IH; last lia. + rewrite !proto_map_message /=. apply proto_message_ne=> // v p' /=. f_equiv. + apply Next_contractive; destruct n as [|n]=> //=; auto. Qed. Lemma proto_map_compose {V} `{Hcn:!Cofe PROPn, Hcn':!Cofe PROPn', Hcn'':!Cofe PROPn'', @@ -283,9 +269,8 @@ Proof. induction (lt_wf n) as [n _ IH]=> PROPn ? PROPn' ? PROPn'' ? PROP ? PROP' ? PROP'' ? gn1 gn2 g1 g2 p /=. destruct (proto_case p) as [->|(a & c & ->)]; [by rewrite !proto_map_end|]. - rewrite !proto_map_message /=. - apply proto_message_contractive; destruct n as [|n]=> // v p' /=. - by rewrite IH; last lia. + rewrite !proto_map_message /=. apply proto_message_ne=> // v p' /=. + do 3 f_equiv. apply Next_contractive; destruct n as [|n]=> //=; auto. Qed. Program Definition protoOF (V : Type) (Fn F : oFunctor) diff --git a/theories/examples/basics.v b/theories/examples/basics.v index 2ad65fe..e45362d 100644 --- a/theories/examples/basics.v +++ b/theories/examples/basics.v @@ -112,34 +112,34 @@ Definition prot : iProto Σ := (<?> MSG #42; END)%proto. Definition prot_ref : iProto Σ := - (<?> l : loc, MSG #l {{ l ↦ #42 }}; END)%proto. + (<? (l : loc)> MSG #l {{ l ↦ #42 }}; END)%proto. Definition prot_del : iProto Σ := - (<?> c : val, MSG c {{ c ↣ prot }}; END)%proto. + (<? c> MSG c {{ c ↣ prot }}; END)%proto. Definition prot_dep : iProto Σ := - (<!> x : Z, MSG #x; <?> MSG #(x + 2); END)%proto. + (<! (x : Z)> MSG #x; <?> MSG #(x + 2); END)%proto. Definition prot_dep_ref : iProto Σ := - (<!> (l : loc) (x : Z), MSG #l {{ l ↦ #x }}; + (<! (l : loc) (x : Z)> MSG #l {{ l ↦ #x }}; <?> MSG #() {{ l ↦ #(x + 2) }}; END)%proto. Definition prot_dep_del : iProto Σ := - (<?> c : val, MSG c {{ c ↣ prot_dep }}; END)%proto. + (<? c> MSG c {{ c ↣ prot_dep }}; END)%proto. Definition prot_dep_del_2 : iProto Σ := - (<!> c : val, MSG c {{ c ↣ prot_dep }}; + (<! c> MSG c {{ c ↣ prot_dep }}; <?> MSG #() {{ c ↣ <?> MSG #42; END }}; END)%proto. Definition prot_dep_del_3 : iProto Σ := - (<!> c : val, MSG c {{ c ↣ prot_dep }}; - <!> y : Z, MSG #y; <?> MSG #() {{ c ↣ <?> MSG #(y + 2); END }}; + (<! c> MSG c {{ c ↣ prot_dep }}; + <! (y : Z)> MSG #y; <?> MSG #() {{ c ↣ <?> MSG #(y + 2); END }}; END)%proto. Definition prot_loop_aux (rec : iProto Σ) : iProto Σ := - (<!> x : Z, MSG #x; <?> MSG #(x + 2); rec)%proto. + (<! (x : Z)> MSG #x; <?> MSG #(x + 2); rec)%proto. Instance prot_loop_contractive : Contractive prot_loop_aux. Proof. solve_proto_contractive. Qed. Definition prot_loop : iProto Σ := fixpoint prot_loop_aux. @@ -148,9 +148,9 @@ Global Instance prot_loop_unfold : Proof. apply proto_unfold_eq, (fixpoint_unfold _). Qed. Definition prot_fun : iProto Σ := - (<!> (P : iProp Σ) (Φ : Z → iProp Σ) (vf : val), + (<! (P : iProp Σ) (Φ : Z → iProp Σ) (vf : val)> MSG vf {{ {{{ P }}} vf #() {{{ x, RET #x; Φ x }}} }}; - <?> (vg : val), + <? (vg : val)> MSG vg {{ {{{ P }}} vg #() {{{ x, RET #(x + 2); Φ x }}} }}; END)%proto. @@ -161,13 +161,13 @@ Fixpoint prot_lock (n : nat) : iProto Σ := end%proto. Definition prot_swap : iProto Σ := - (<!> x : Z, MSG #x; + (<! (x : Z)> MSG #x; <?> MSG #20; <?> MSG #x; END)%proto. Definition prot_swap_twice : iProto Σ := - (<!> x : Z, MSG #x; - <!> y : Z, MSG #y; + (<! (x : Z)> MSG #x; + <! (y : Z)> MSG #y; <?> MSG #20; <?> MSG #(x+y); END)%proto. @@ -285,9 +285,9 @@ Proof. c ↣ iProto_dual (prot_lock n))%I with "[Hc Hs]"); first by eauto with iFrame. iIntros (lk γlk) "#Hlk". - iAssert (â–¡ (client γ ε -∗ - WP acquire lk;; send c #21;; release lk {{ _, True }}))%I as "#Hhelp". - { iIntros "!> Hcl". + iAssert (client γ ε -∗ + WP acquire lk;; send c #21;; release lk {{ _, True }})%I with "[]" as "#Hhelp". + { iIntros "Hcl". wp_apply (acquire_spec with "[$]"); iIntros "[Hl H]". iDestruct "H" as (n) "[Hs Hc]". iDestruct (server_agree with "Hs Hcl") as %[? _]. diff --git a/theories/examples/map.v b/theories/examples/map.v index 42ca8c1..807535a 100644 --- a/theories/examples/map.v +++ b/theories/examples/map.v @@ -72,11 +72,11 @@ Section map. nat -d> gmultiset A -d> iProto Σ := λ i X, let rec : nat → gmultiset A → iProto Σ := rec in (if i is 0 then END else - ((<!> x v, MSG v {{ IA x v }}; rec i (X ⊎ {[ x ]})) + ((<! x v> MSG v {{ IA x v }}; rec i (X ⊎ {[ x ]})) <+> rec (pred i) X ) <{⌜ i ≠1 ∨ X = ∅ âŒ}&> - <?> x (l : loc), MSG #l {{ ⌜ x ∈ X ⌠∗ llist IB l (map x) }}; + <? x (l : loc)> MSG #l {{ ⌜ x ∈ X ⌠∗ llist IB l (map x) }}; rec i (X ∖ {[ x ]}))%proto. Instance par_map_protocol_aux_contractive : Contractive par_map_protocol_aux. Proof. solve_proper_prepare. f_equiv. solve_proto_contractive. Qed. diff --git a/theories/examples/sort.v b/theories/examples/sort.v index d4d3b2c..d8affb6 100644 --- a/theories/examples/sort.v +++ b/theories/examples/sort.v @@ -45,13 +45,13 @@ Section sort. Context `{!heapG Σ, !chanG Σ}. Definition sort_protocol {A} (I : A → val → iProp Σ) (R : A → A → Prop) : iProto Σ := - (<!> (xs : list A) (l : loc), MSG #l {{ llist I l xs }}; - <?> (xs' : list A), MSG #() {{ ⌜ Sorted R xs' ⌠∗ ⌜ xs' ≡ₚ xs ⌠∗ llist I l xs' }}; + (<! (xs : list A) (l : loc)> MSG #l {{ llist I l xs }}; + <? (xs' : list A)> MSG #() {{ ⌜ Sorted R xs' ⌠∗ ⌜ xs' ≡ₚ xs ⌠∗ llist I l xs' }}; END)%proto. Definition sort_protocol_func : iProto Σ := - (<!> A (I : A → val → iProp Σ) (R : A → A → Prop) - `{!RelDecision R, !Total R} (cmp : val), + (<! A (I : A → val → iProp Σ) (R : A → A → Prop) + `{!RelDecision R, !Total R} (cmp : val)> MSG cmp {{ cmp_spec I R cmp }}; sort_protocol I R)%proto. diff --git a/theories/examples/sort_br_del.v b/theories/examples/sort_br_del.v index b5c85f4..c153b98 100644 --- a/theories/examples/sort_br_del.v +++ b/theories/examples/sort_br_del.v @@ -60,7 +60,7 @@ Section sort_service_br_del. Qed. Definition sort_protocol_del_aux (rec : iProto Σ) : iProto Σ := - ((<?> c, MSG c {{ c ↣ sort_protocol I R }}; rec) <+> END)%proto. + ((<? c> MSG c {{ c ↣ sort_protocol I R }}; rec) <+> END)%proto. Instance sort_protocol_del_aux_contractive : Contractive sort_protocol_del_aux. Proof. solve_proto_contractive. Qed. Definition sort_protocol_del : iProto Σ := fixpoint sort_protocol_del_aux. @@ -83,7 +83,7 @@ Section sort_service_br_del. Qed. Definition sort_protocol_br_del_aux (rec : iProto Σ) : iProto Σ := - ((sort_protocol I R <++> rec) <+> ((<?> c, MSG c {{ c ↣ rec }}; rec) <+> END))%proto. + ((sort_protocol I R <++> rec) <+> ((<? c> MSG c {{ c ↣ rec }}; rec) <+> END))%proto. Instance sort_protocol_br_del_aux_contractive : Contractive sort_protocol_br_del_aux. Proof. solve_proto_contractive. Qed. Definition sort_protocol_br_del : iProto Σ := fixpoint sort_protocol_br_del_aux. diff --git a/theories/examples/sort_fg.v b/theories/examples/sort_fg.v index f7a4565..f2ef96e 100644 --- a/theories/examples/sort_fg.v +++ b/theories/examples/sort_fg.v @@ -79,7 +79,7 @@ Section sort_fg. Definition sort_fg_tail_protocol_aux (xs : list A) (rec : list A -d> iProto Σ) : list A -d> iProto Σ := λ ys, - ((<?> y v, MSG v {{ ⌜ TlRel R y ys ⌠∗ I y v }}; (rec : _ → iProto Σ) (ys ++ [y])) + ((<? y v> MSG v {{ ⌜ TlRel R y ys ⌠∗ I y v }}; rec (ys ++ [y])) <&{⌜ ys ≡ₚ xs âŒ}> END)%proto. Instance sort_fg_tail_protocol_aux_contractive xs : @@ -94,7 +94,7 @@ Section sort_fg. Definition sort_fg_head_protocol_aux (rec : list A -d> iProto Σ) : list A -d> iProto Σ := λ xs, - ((<!> x v, MSG v {{ I x v }}; (rec : _ → iProto Σ) (xs ++ [x])) + ((<! x v > MSG v {{ I x v }}; (rec : _ → iProto Σ) (xs ++ [x])) <+> sort_fg_tail_protocol xs [])%proto. Instance sort_fg_head_protocol_aux_contractive : @@ -293,8 +293,8 @@ Section sort_fg. End sort_fg_inner. Definition sort_fg_func_protocol : iProto Σ := - (<!> A (I : A → val → iProp Σ) (R : A → A → Prop) - `{!RelDecision R, !Total R} (cmp : val), + (<! A (I : A → val → iProp Σ) (R : A → A → Prop) + `{!RelDecision R, !Total R} (cmp : val)> MSG cmp {{ cmp_spec I R cmp }}; sort_fg_head_protocol I R [])%proto. diff --git a/theories/logrel/examples/double.v b/theories/logrel/examples/double.v index e3b76c8..1d8a927 100755 --- a/theories/logrel/examples/double.v +++ b/theories/logrel/examples/double.v @@ -22,14 +22,14 @@ Section double. Context `{heapG Σ, chanG Σ, inG Σ fracR, spawnG Σ}. Definition prog_prot : iProto Σ := - (<?> (x : Z), MSG #x; <?> (y : Z), MSG #y; END)%proto. + (<? (x : Z)> MSG #x; <? (y : Z)> MSG #y; END)%proto. Definition chan_inv (c : val) (γ : gname) : iProp Σ := - ((c ↣ prog_prot) ∨ - (own γ (1/2)%Qp ∗ c ↣ (<?> (x : Z), MSG #x; END)%proto) ∨ + (c ↣ prog_prot ∨ + (own γ (1/2)%Qp ∗ c ↣ <? (x : Z)> MSG #x; END) ∨ (own γ 1%Qp ∗ c ↣ END))%I. - Lemma wp_prog (c : val): + Lemma wp_prog c : {{{ â–· c ↣ prog_prot }}} prog c {{{ (k1 k2 : Z), RET (#k1, #k2); True }}}. @@ -93,13 +93,8 @@ Section double. iIntros (c) "Hc". iApply (wp_prog with "[Hc]"). { iApply (iProto_mapsto_le _ (lsty_car (<??> lty_int; <??> lty_int; END)) with "Hc"). - iApply iProto_le_recv. - iIntros "!> !> !>" (? [x ->]). - iExists _. do 2 (iSplit; [done|]). - iApply iProto_le_recv. - iIntros "!>" (? [y ->]). - iExists _. do 2 (iSplit; [done|]). - iApply iProto_le_refl. } + iIntros "!> !>" (v1). iMod 1 as %[x1 ->]. iExists x1. + iIntros "!>" (v2). iMod 1 as %[x2 ->]. iExists x2. auto. } iIntros "!>" (k1 k2 _). iExists _, _. iSplit; first done. eauto. Qed. diff --git a/theories/logrel/model.v b/theories/logrel/model.v index b5d1e71..a44e55e 100644 --- a/theories/logrel/model.v +++ b/theories/logrel/model.v @@ -46,13 +46,13 @@ Section lty_ofe. | lty_kind => λ n S T, lsty_car S ≡{n}≡ lsty_car T end. - Lemma lty_mixin k : OfeMixin (lty Σ k). + Lemma lty_ofe_mixin k : OfeMixin (lty Σ k). Proof. destruct k. - by apply (iso_ofe_mixin (ltty_car : _ → val -d> _)). - by apply (iso_ofe_mixin (lsty_car : _ → iProto _)). Qed. - Canonical Structure ltyO k := OfeT (lty Σ k) (lty_mixin k). + Canonical Structure ltyO k := OfeT (lty Σ k) (lty_ofe_mixin k). Global Instance lty_cofe k : Cofe (ltyO k). Proof. diff --git a/theories/logrel/session_types.v b/theories/logrel/session_types.v index dec1ee5..9ba6d36 100644 --- a/theories/logrel/session_types.v +++ b/theories/logrel/session_types.v @@ -5,10 +5,10 @@ From actris.channel Require Export channel. Definition lty_end {Σ} : lsty Σ := Lsty END. Definition lty_message {Σ} (a : action) (A : ltty Σ) (S : lsty Σ) : lsty Σ := - Lsty (<a> v, MSG v {{ ltty_car A v }}; lsty_car S). + Lsty (<a@v> MSG v {{ â–· ltty_car A v }}; lsty_car S). Definition lty_choice {Σ} (a : action) (Ss : gmap Z (lsty Σ)) : lsty Σ := - Lsty (<a> x : Z, MSG #x {{ ⌜is_Some (Ss !! x)⌠}}; lsty_car (Ss !!! x)). + Lsty (<a@(x : Z)> MSG #x {{ ⌜is_Some (Ss !! x)⌠}}; lsty_car (Ss !!! x)). Definition lty_dual {Σ} (S : lsty Σ) : lsty Σ := Lsty (iProto_dual (lsty_car S)). @@ -35,29 +35,22 @@ Section session_types. Context {Σ : gFunctors}. Global Instance lty_message_ne a : NonExpansive2 (@lty_message Σ a). - Proof. intros n A A' ? S S' ?. by apply iProto_message_ne; simpl. Qed. + Proof. solve_proper. Qed. Global Instance lty_message_proper a : Proper ((≡) ==> (≡) ==> (≡)) (@lty_message Σ a). Proof. apply ne_proper_2, _. Qed. Global Instance lty_message_contractive n a : Proper (dist_later n ==> dist_later n ==> dist n) (@lty_message Σ a). - Proof. - intros A A' ? S S' ?. - apply iProto_message_contractive; simpl; done || by destruct n. - Qed. + Proof. solve_contractive. Qed. Global Instance lty_choice_ne a : NonExpansive (@lty_choice Σ a). - Proof. - intros n Ss1 Ss2 Pseq. apply iProto_message_ne; simpl; solve_proper. - Qed. + Proof. solve_proper. Qed. Global Instance lty_choice_proper a : Proper ((≡) ==> (≡)) (@lty_choice Σ a). - Proof. apply ne_proper. apply _. Qed. + Proof. apply ne_proper, _. Qed. +(* FIXME Global Instance lty_choice_contractive a : Contractive (@lty_choice Σ a). - Proof. - intros ? Ss1 Ss2 ?. - apply iProto_message_contractive; destruct n; simpl; done || solve_proper. - Qed. - + Proof. solve_contractive. Qed. +*) Global Instance lty_dual_ne : NonExpansive (@lty_dual Σ). Proof. solve_proper. Qed. Global Instance lty_dual_proper : Proper ((≡) ==> (≡)) (@lty_dual Σ). diff --git a/theories/logrel/subtyping_rules.v b/theories/logrel/subtyping_rules.v index fb10025..1a7342a 100644 --- a/theories/logrel/subtyping_rules.v +++ b/theories/logrel/subtyping_rules.v @@ -10,11 +10,7 @@ Section subtyping_rules. (** Generic rules *) Lemma lty_le_refl {k} (M : lty Σ k) : ⊢ M <: M. - Proof. - destruct k. - - by iIntros (v) "!> H". - - iModIntro. iApply iProto_le_refl. - Qed. + Proof. destruct k. by iIntros (v) "!> H". by iModIntro. Qed. Lemma lty_le_trans {k} (M1 M2 M3 : lty Σ k) : M1 <: M2 -∗ M2 <: M3 -∗ M1 <: M3. Proof. destruct k. @@ -254,143 +250,93 @@ Section subtyping_rules. â–· (A2 <: A1) -∗ â–· (S1 <: S2) -∗ (<!!> A1 ; S1) <: (<!!> A2 ; S2). Proof. - iIntros "#HAle #HSle !>". iApply iProto_le_send; iIntros "!> /=" (x) "H". - iDestruct ("HAle" with "H") as "H". - eauto with iFrame. + iIntros "#HAle #HSle !>" (v) "H". iExists v. + iDestruct ("HAle" with "H") as "$". by iModIntro. Qed. Lemma lty_le_recv A1 A2 S1 S2 : â–· (A1 <: A2) -∗ â–· (S1 <: S2) -∗ (<??> A1 ; S1) <: (<??> A2 ; S2). Proof. - iIntros "#HAle #HSle !>". iApply iProto_le_recv; iIntros "!> /=" (x) "H". - iDestruct ("HAle" with "H") as "H". - eauto with iFrame. + iIntros "#HAle #HSle !>" (v) "H". iExists v. + iDestruct ("HAle" with "H") as "$". by iModIntro. Qed. Lemma lty_le_swap_recv_send A1 A2 S : ⊢ (<??> A1; <!!> A2; S) <: (<!!> A2; <??> A1; S). Proof. - iIntros "!>". iApply iProto_le_swap. iIntros "!>" (v1 v2) "/= HS1 HS2". - iExists _, _, - (tele_app (TT:=[tele _]) (λ v2, (v2, ltty_car A2 v2, lsty_car S))), - (tele_app (TT:=[tele _]) (λ v1, (v1, ltty_car A1 v1, lsty_car S))), - v2, v1; simpl. - do 2 (iSplit; [done|]). - iFrame "HS1 HS2". - do 2 (iSplitR; [iApply iProto_le_refl|]). by iFrame. + iIntros "!>" (v1 v2). + iApply iProto_le_trans; + [iApply iProto_le_base; iApply (iProto_le_exist_intro_l _ v2)|]. + iApply iProto_le_trans; + [|iApply iProto_le_base; iApply (iProto_le_exist_intro_r _ v1)]; simpl. + iApply iProto_le_base_swap. Qed. Lemma lty_le_swap_recv_select A Ss : - ⊢ (<??> A; lty_select Ss) <: (lty_select ((λ S, <??> A ; S)%lty <$> Ss)). - Proof. - iIntros "!>". iApply iProto_le_swap. iIntros "!>" (v1 v2) "/=". - iIntros "HS1" (HS2). - iExists _, _, - (tele_app (TT:=[tele _]) (λ (v2 : Z),(#v2, ⌜is_Some (((λ S : lsty Σ, (<??> A; S)%lty) <$> Ss) !! v2)âŒ%I, lsty_car (Ss !!! v2)))), - (tele_app (TT:=[tele _]) (λ v1, (v1, ltty_car A v1, lsty_car (Ss !!! v2)))), - v2, v1; simpl. - do 2 (iSplit; [done|]). - iFrame "HS1". - iSplitL. - - iApply iProto_le_send=> /=. - iIntros "!>" (x HSsx). iExists _. - rewrite lookup_fmap in HSsx. - apply fmap_is_Some in HSsx. - do 2 (iSplit; first done). - iApply iProto_le_refl. - - iSplit; last done. - destruct HS2 as [x HS2]. - rewrite !lookup_total_alt !lookup_fmap /=. - rewrite lookup_fmap in HS2. - destruct (Ss !! v2); inversion HS2. - iApply iProto_le_recv=> /=. - iIntros "!>" (y) "H". iExists _. - iFrame. iSplit; first done. - iApply iProto_le_refl. + ⊢ (<??> A; lty_select Ss) <: lty_select ((λ S, <??> A; S) <$> Ss)%lty. + Proof. + iIntros "!>" (v1 x2). + iApply iProto_le_trans; + [iApply iProto_le_base; iApply (iProto_le_exist_intro_l _ x2)|]; simpl. + iApply iProto_le_payload_elim_r. + rewrite !lookup_total_alt !lookup_fmap fmap_is_Some; iIntros ([S ->]) "/=". + iApply iProto_le_trans; [iApply iProto_le_base_swap|]. iSplitL; [by eauto|]. + iModIntro. by iExists v1. Qed. Lemma lty_le_swap_branch_send A Ss : - ⊢ lty_branch ((λ S, <!!> A ; S)%lty <$> Ss) <: (<!!> A ; lty_branch Ss). - Proof. - iIntros "!>". iApply iProto_le_swap. iIntros "!>" (v1 v2) "/=". - iIntros (HS1) "HS2". - iExists _, _, - (tele_app (TT:=[tele _]) (λ v2, (v2, ltty_car A v2, lsty_car (Ss !!! v1)))), - (tele_app (TT:=[tele _]) (λ (v1 : Z),(#v1, ⌜is_Some (((λ S : lsty Σ, (<!!> A; S)%lty) <$> Ss) !! v1)âŒ%I, lsty_car (Ss !!! v1)))), - v2, v1; simpl. - do 2 (iSplit; [done|]). - iFrame "HS2". - iSplitL. - - destruct HS1 as [x HS1]. - rewrite !lookup_total_alt !lookup_fmap /=. - rewrite lookup_fmap in HS1. - destruct (Ss !! v1); inversion HS1. - iApply iProto_le_send=> /=. - iIntros "!>" (y) "H". iExists _. - iFrame. iSplit; first done. - iApply iProto_le_refl. - - iSplit; last done. - iApply iProto_le_recv=> /=. - iIntros "!>" (y HSsy). iExists _. - rewrite lookup_fmap in HSsy. - apply fmap_is_Some in HSsy. - do 2 (iSplit; first done). - iApply iProto_le_refl. + ⊢ lty_branch ((λ S, <!!> A; S) <$> Ss)%lty <: (<!!> A; lty_branch Ss). + Proof. + iIntros "!>" (x1 v2). + iApply iProto_le_trans; + [|iApply iProto_le_base; iApply (iProto_le_exist_intro_r _ x1)]; simpl. + iApply iProto_le_payload_elim_l. + rewrite !lookup_total_alt !lookup_fmap fmap_is_Some; iIntros ([S ->]) "/=". + iApply iProto_le_trans; [|iApply iProto_le_base_swap]. iSplitL; [by eauto|]. + iModIntro. by iExists v2. Qed. Lemma lty_le_select (Ss1 Ss2 : gmap Z (lsty Σ)) : â–· ([∗ map] S1;S2 ∈ Ss1; Ss2, S1 <: S2) -∗ lty_select Ss1 <: lty_select Ss2. Proof. - iIntros "#H1 !>". iApply iProto_le_send; iIntros "!>" (x Hsome). - iExists x. iSplit; first done. iSplit. - - iDestruct (big_sepM2_forall with "H1") as "[% _]". - iPureIntro. naive_solver. - - iDestruct (big_sepM2_forall with "H1") as "[% H]". - iApply ("H" with "[] []"). - + iPureIntro. apply lookup_lookup_total; naive_solver. - + iPureIntro. by apply lookup_lookup_total. + iIntros "#H !>" (x); iDestruct 1 as %[S2 HSs2]. iExists x. + iDestruct (big_sepM2_forall with "H") as "{H} [>% H]". + assert (is_Some (Ss1 !! x)) as [S1 HSs1] by naive_solver. + rewrite HSs1. iSplitR; [by eauto|]. + iIntros "!>". rewrite !lookup_total_alt HSs1 HSs2 /=. + by iApply ("H" with "[] []"). Qed. Lemma lty_le_select_subseteq (Ss1 Ss2 : gmap Z (lsty Σ)) : Ss2 ⊆ Ss1 → ⊢ lty_select Ss1 <: lty_select Ss2. Proof. - iIntros (Hle) "!>". iApply iProto_le_send; iIntros "!>" (x Hsome). - iExists _. iSplit; first done. iSplit. - { iPureIntro. by eapply lookup_weaken_is_Some. } - destruct Hsome as [P H1]. - assert (Ss1 !! x = Some P) by eauto using lookup_weaken. - rewrite (lookup_total_correct Ss1 x P) //. - rewrite (lookup_total_correct Ss2 x P) //. - iApply iProto_le_refl. + intros; iIntros "!>" (x); iDestruct 1 as %[S HSs2]. iExists x. + assert (Ss1 !! x = Some S) as HSs1 by eauto using lookup_weaken. + rewrite HSs1. iSplitR; [by eauto|]. + iIntros "!>". by rewrite !lookup_total_alt HSs1 HSs2 /=. Qed. Lemma lty_le_branch (Ss1 Ss2 : gmap Z (lsty Σ)) : â–· ([∗ map] S1;S2 ∈ Ss1; Ss2, S1 <: S2) -∗ lty_branch Ss1 <: lty_branch Ss2. Proof. - iIntros "#H1 !>". iApply iProto_le_recv; iIntros "!>" (x Hsome). - iExists x. iSplit; first done. iSplit. - - iDestruct (big_sepM2_forall with "H1") as "[% _]". - iPureIntro. by naive_solver. - - iDestruct (big_sepM2_forall with "H1") as "[% H]". - iApply ("H" with "[] []"). - + iPureIntro. by apply lookup_lookup_total. - + iPureIntro. by apply lookup_lookup_total; naive_solver. + iIntros "#H !>" (x); iDestruct 1 as %[S1 HSs1]. iExists x. + iDestruct (big_sepM2_forall with "H") as "{H} [>% H]". + assert (is_Some (Ss2 !! x)) as [S2 HSs2] by naive_solver. + rewrite HSs2. iSplitR; [by eauto|]. + iIntros "!>". rewrite !lookup_total_alt HSs1 HSs2 /=. + by iApply ("H" with "[] []"). Qed. Lemma lty_le_branch_subseteq (Ss1 Ss2 : gmap Z (lsty Σ)) : Ss1 ⊆ Ss2 → ⊢ lty_branch Ss1 <: lty_branch Ss2. Proof. - iIntros (Hle) "!>". iApply iProto_le_recv; iIntros "!>" (x Hsome). - iExists _. iSplit; first done. iSplit. - { iPureIntro. by eapply lookup_weaken_is_Some. } - destruct Hsome as [P ?]. - assert (Ss2 !! x = Some P) by eauto using lookup_weaken. - rewrite (lookup_total_correct Ss1 x P) //. - rewrite (lookup_total_correct Ss2 x P) //. - iApply iProto_le_refl. + intros; iIntros "!>" (x); iDestruct 1 as %[S HSs1]. iExists x. + assert (Ss2 !! x = Some S) as HSs2 by eauto using lookup_weaken. + rewrite HSs2. iSplitR; [by eauto|]. + iIntros "!>". by rewrite !lookup_total_alt HSs1 HSs2 /=. Qed. (** Algebraic laws *) @@ -400,47 +346,32 @@ Section subtyping_rules. Proof. iIntros "#H1 #H2 !>". by iApply iProto_le_app. Qed. Lemma lty_le_app_id_l S : ⊢ (END <++> S) <:> S. - Proof. rewrite /lty_app left_id. iSplit; iModIntro; iApply iProto_le_refl. Qed. + Proof. rewrite /lty_app left_id. iSplit; by iModIntro. Qed. Lemma lty_le_app_id_r S : ⊢ (S <++> END) <:> S. - Proof. rewrite /lty_app right_id. iSplit; iModIntro; iApply iProto_le_refl. Qed. + Proof. rewrite /lty_app right_id. iSplit; by iModIntro. Qed. Lemma lty_le_app_assoc S1 S2 S3 : ⊢ (S1 <++> S2) <++> S3 <:> S1 <++> (S2 <++> S3). - Proof. rewrite /lty_app assoc. iSplit; iModIntro; iApply iProto_le_refl. Qed. + Proof. rewrite /lty_app assoc. iSplit; by iModIntro. Qed. Lemma lty_le_app_send A S1 S2 : ⊢ (<!!> A; S1) <++> S2 <:> (<!!> A; S1 <++> S2). Proof. - rewrite /lty_app iProto_app_message_tele. - iSplit; iIntros "!>"; iApply iProto_le_refl. + rewrite /lty_app iProto_app_message iMsg_app_exist. + setoid_rewrite iMsg_app_base. iSplit; by iIntros "!> /=". Qed. Lemma lty_le_app_recv A S1 S2 : ⊢ (<??> A; S1) <++> S2 <:> (<??> A; S1 <++> S2). Proof. - rewrite /lty_app iProto_app_message_tele. - iSplit; iIntros "!>"; iApply iProto_le_refl. + rewrite /lty_app iProto_app_message iMsg_app_exist. + setoid_rewrite iMsg_app_base. iSplit; by iIntros "!> /=". Qed. Lemma lty_le_app_choice a (Ss : gmap Z (lsty Σ)) S2 : ⊢ lty_choice a Ss <++> S2 <:> lty_choice a ((.<++> S2) <$> Ss)%lty. Proof. - destruct a. - - rewrite /lty_app iProto_app_message_tele. iSplit; iIntros "!> /=". - + iApply iProto_le_send; iIntros "!>" (x [S HSs]); simpl in *. - move: HSs; rewrite lookup_fmap fmap_Some; intros (S'&HSs&->). - iExists _; do 2 (iSplit; [by eauto|]). - rewrite !lookup_total_alt lookup_fmap !HSs /=. iApply iProto_le_refl. - + iApply iProto_le_send; iIntros "!>" (x [S HSs]); simpl in *. - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. - - rewrite /lty_app iProto_app_message_tele. iSplit; iIntros "!> /=". - + iApply iProto_le_recv; iIntros "!>" (x [S HSs]); simpl in *. - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. - + iApply iProto_le_recv; iIntros "!>" (x [S HSs]); simpl in *. - move: HSs; rewrite lookup_fmap fmap_Some; intros (S'&HSs&->). - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. + rewrite /lty_app /lty_choice iProto_app_message iMsg_app_exist; + setoid_rewrite iMsg_app_base; setoid_rewrite lookup_total_alt; + setoid_rewrite lookup_fmap; setoid_rewrite fmap_is_Some. + iSplit; iIntros "!> /="; destruct a; iIntros (x); iExists x; + iDestruct 1 as %[S ->]; iSplitR; eauto. Qed. Lemma lty_le_app_select A Ss S2 : ⊢ lty_select Ss <++> S2 <:> lty_select ((.<++> S2) <$> Ss)%lty. @@ -462,8 +393,8 @@ Section subtyping_rules. Lemma lty_le_dual_message a A S : ⊢ lty_dual (lty_message a A S) <:> lty_message (action_dual a) A (lty_dual S). Proof. - iSplit; iIntros "!>"; rewrite /lty_dual iProto_dual_message_tele; - iApply iProto_le_refl. + rewrite /lty_dual iProto_dual_message iMsg_dual_exist. + setoid_rewrite iMsg_dual_base. iSplit; by iIntros "!> /=". Qed. Lemma lty_le_dual_send A S : ⊢ lty_dual (<!!> A; S) <:> (<??> A; lty_dual S). Proof. apply lty_le_dual_message. Qed. @@ -473,26 +404,11 @@ Section subtyping_rules. Lemma lty_le_dual_choice a (Ss : gmap Z (lsty Σ)) : ⊢ lty_dual (lty_choice a Ss) <:> lty_choice (action_dual a) (lty_dual <$> Ss). Proof. - destruct a. - - rewrite /lty_dual iProto_dual_message_tele. iSplit; iIntros "!> /=". - + iApply iProto_le_recv; iIntros "!>" (x [S HSs]); simpl in *. - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. - + iApply iProto_le_recv; iIntros "!>" (x [S HSs]); simpl in *. - move: HSs; rewrite lookup_fmap fmap_Some; intros (S'&HSs&->). - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. - - rewrite /lty_dual iProto_dual_message_tele. iSplit; iIntros "!> /=". - + iApply iProto_le_send; iIntros "!>" (x [S HSs]); simpl in *. - move: HSs; rewrite lookup_fmap fmap_Some; intros (S'&HSs&->). - iExists _; do 2 (iSplit; [by eauto|]). - rewrite !lookup_total_alt lookup_fmap !HSs /=. iApply iProto_le_refl. - + iApply iProto_le_send; iIntros "!>" (x [S HSs]); simpl in *. - iExists _; iSplit; [by eauto|]. - rewrite !lookup_total_alt lookup_fmap !HSs /=. - iSplit; [by eauto|]. iApply iProto_le_refl. + rewrite /lty_dual /lty_choice iProto_dual_message iMsg_dual_exist; + setoid_rewrite iMsg_dual_base; setoid_rewrite lookup_total_alt; + setoid_rewrite lookup_fmap; setoid_rewrite fmap_is_Some. + iSplit; iIntros "!> /="; destruct a; iIntros (x); iExists x; + iDestruct 1 as %[S ->]; iSplitR; eauto. Qed. Lemma lty_le_dual_select (Ss : gmap Z (lsty Σ)) : -- GitLab