From ce6097e898b08507537a40bce0c7bbdb3a8b097a Mon Sep 17 00:00:00 2001 From: jihgfee <jihgfee@gmail.com> Date: Thu, 16 Apr 2020 12:01:06 +0200 Subject: [PATCH] Changed the meta letter for session types from P to S --- theories/logrel/session_types.v | 48 +++++++++++++------------- theories/logrel/subtyping.v | 60 ++++++++++++++++----------------- theories/logrel/types.v | 30 ++++++++--------- 3 files changed, 69 insertions(+), 69 deletions(-) diff --git a/theories/logrel/session_types.v b/theories/logrel/session_types.v index 372f36c..3f1e67d 100644 --- a/theories/logrel/session_types.v +++ b/theories/logrel/session_types.v @@ -10,21 +10,21 @@ Section protocols. Definition lsty_end : lsty Σ := Lsty END. - Definition lsty_message (a : action) (A : lty Σ) (P : lsty Σ) : lsty Σ := - Lsty (<a> v, MSG v {{ A v }}; lsty_car P). + Definition lsty_message (a : action) (A : lty Σ) (S : lsty Σ) : lsty Σ := + Lsty (<a> v, MSG v {{ A v }}; lsty_car S). - Definition lsty_send (A : lty Σ) (P : lsty Σ) : lsty Σ := - lsty_message Send A P. - Definition lsty_recv (A : lty Σ) (P : lsty Σ) : lsty Σ := - lsty_message Recv A P. + Definition lsty_send (A : lty Σ) (S : lsty Σ) : lsty Σ := + lsty_message Send A S. + Definition lsty_recv (A : lty Σ) (S : lsty Σ) : lsty Σ := + lsty_message Recv A S. - Definition lsty_choice (a : action) (Ps : gmap Z (lsty Σ)) : lsty Σ := - Lsty (<a> x : Z, MSG #x {{ ⌜is_Some (Ps !! x)⌠}}; lsty_car (Ps !!! x)). + Definition lsty_choice (a : action) (Ss : gmap Z (lsty Σ)) : lsty Σ := + Lsty (<a> x : Z, MSG #x {{ ⌜is_Some (Ss !! x)⌠}}; lsty_car (Ss !!! x)). - Definition lsty_select (Ps : gmap Z (lsty Σ)) : lsty Σ := - lsty_choice Send Ps. - Definition lsty_branch (Ps : gmap Z (lsty Σ)) : lsty Σ := - lsty_choice Recv Ps. + Definition lsty_select (Ss : gmap Z (lsty Σ)) : lsty Σ := + lsty_choice Send Ss. + Definition lsty_branch (Ss : gmap Z (lsty Σ)) : lsty Σ := + lsty_choice Recv Ss. Definition lsty_rec1 (C : lsty Σ → lsty Σ) `{!Contractive C} (rec : lsty Σ) : lsty Σ := Lsty (C rec). @@ -33,22 +33,22 @@ Section protocols. Definition lsty_rec (C : lsty Σ → lsty Σ) `{!Contractive C} : lsty Σ := fixpoint (lsty_rec1 C). - Definition lsty_dual (P : lsty Σ) : lsty Σ := - Lsty (iProto_dual P). + Definition lsty_dual (S : lsty Σ) : lsty Σ := + Lsty (iProto_dual S). - Definition lsty_app (P1 P2 : lsty Σ) : lsty Σ := - Lsty (P1 <++> P2). + Definition lsty_app (S1 S2 : lsty Σ) : lsty Σ := + Lsty (S1 <++> S2). End protocols. Section Propers. Context `{heapG Σ, protoG Σ}. Global Instance lsty_message_ne a : NonExpansive2 (@lsty_message Σ a). - Proof. intros n A A' ? P P' ?. by apply iProto_message_ne; simpl. Qed. + Proof. intros n A A' ? S S' ?. by apply iProto_message_ne; simpl. Qed. Global Instance lsty_message_contractive n a : Proper (dist_later n ==> dist_later n ==> dist n) (@lsty_message Σ a). Proof. - intros A A' ? P P' ?. + intros A A' ? S S' ?. apply iProto_message_contractive; simpl; done || by destruct n. Qed. @@ -66,11 +66,11 @@ Section Propers. Global Instance lsty_choice_ne a : NonExpansive (@lsty_choice Σ a). Proof. - intros n Ps1 Ps2 Pseq. apply iProto_message_ne; simpl; solve_proper. + intros n Ss1 Ss2 Pseq. apply iProto_message_ne; simpl; solve_proper. Qed. Global Instance lsty_choice_contractive a : Contractive (@lsty_choice Σ a). Proof. - intros ? Ps1 Ps2 ?. + intros ? Ss1 Ss2 ?. apply iProto_message_contractive; destruct n; simpl; done || solve_proper. Qed. @@ -91,8 +91,8 @@ Section Propers. End Propers. Notation "'END'" := lsty_end : lsty_scope. -Notation "<!!> A ; P" := - (lsty_send A P) (at level 20, A, P at level 200) : lsty_scope. -Notation "<??> A ; P" := - (lsty_recv A P) (at level 20, A, P at level 200) : lsty_scope. +Notation "<!!> A ; S" := + (lsty_send A S) (at level 20, A, S at level 200) : lsty_scope. +Notation "<??> A ; S" := + (lsty_recv A S) (at level 20, A, S at level 200) : lsty_scope. Infix "<++>" := lsty_app (at level 60) : lsty_scope. diff --git a/theories/logrel/subtyping.v b/theories/logrel/subtyping.v index 9073812..f864d2e 100644 --- a/theories/logrel/subtyping.v +++ b/theories/logrel/subtyping.v @@ -18,7 +18,7 @@ Proof. solve_proper. Qed. Definition lsty_le {Σ} (P1 P2 : lsty Σ) : iProp Σ := □ iProto_le P1 P2. Arguments lsty_le {_} _%lsty _%lsty. -Infix "<p:" := lsty_le (at level 70). +Infix "<s:" := lsty_le (at level 70). Instance: Params (@lsty_le) 1 := {}. Instance lsty_le_ne {Σ} : NonExpansive2 (@lsty_le Σ). @@ -29,9 +29,9 @@ Proof. solve_proper. Qed. Section subtype. Context `{heapG Σ, chanG Σ}. Implicit Types A : lty Σ. - Implicit Types P : lsty Σ. + Implicit Types S : lsty Σ. - Lemma lty_le_refl A : ⊢ A <: A. + Lemma lty_le_refl (A : lty Σ) : ⊢ A <: A. Proof. by iIntros (v) "!> H". Qed. Lemma lty_le_trans A1 A2 A3 : A1 <: A2 -∗ A2 <: A3 -∗ A1 <: A3. @@ -169,15 +169,15 @@ Section subtype. - iDestruct 1 as (v) "[Hl HA]". iExists v. iFrame "Hl". by iApply "Hle2". Qed. - Lemma lsty_le_refl P : ⊢ P <p: P. + Lemma lsty_le_refl (S : lsty Σ) : ⊢ S <s: S. Proof. iApply iProto_le_refl. Qed. - Lemma lsty_le_trans P1 P2 P3 : P1 <p: P2 -∗ P2 <p: P3 -∗ P1 <p: P3. + Lemma lsty_le_trans S1 S2 S3 : S1 <s: S2 -∗ S2 <s: S3 -∗ S1 <s: S3. Proof. iIntros "#H1 #H2 !>". by iApply iProto_le_trans. Qed. - Lemma lsty_send_le A1 A2 P1 P2 : - ▷ (A2 <: A1) -∗ ▷ (P1 <p: P2) -∗ - (<!!> A1 ; P1) <p: (<!!> A2 ; P2). + Lemma lsty_send_le A1 A2 S1 S2 : + ▷ (A2 <: A1) -∗ ▷ (S1 <s: S2) -∗ + (<!!> A1 ; S1) <s: (<!!> A2 ; S2). Proof. iIntros "#HAle #HPle !>". iApply iProto_le_send=> /=. @@ -186,9 +186,9 @@ Section subtype. eauto with iFrame. Qed. - Lemma lsty_recv_le A1 A2 P1 P2 : - ▷ (A1 <: A2) -∗ ▷ (P1 <p: P2) -∗ - (<??> A1 ; P1) <p: (<??> A2 ; P2). + Lemma lsty_recv_le A1 A2 S1 S2 : + ▷ (A1 <: A2) -∗ ▷ (S1 <s: S2) -∗ + (<??> A1 ; S1) <s: (<??> A2 ; S2). Proof. iIntros "#HAle #HPle !>". iApply iProto_le_recv; simpl. @@ -198,23 +198,23 @@ Section subtype. Qed. Lemma lsty_swap_le (A1 A2 : lty Σ) (P : lsty Σ) : - ⊢ (<??> A1 ; <!!> A2 ; P) <p: (<!!> A2 ; <??> A1 ; P). + ⊢ (<??> A1 ; <!!> A2 ; P) <s: (<!!> A2 ; <??> A1 ; P). Proof. iIntros "!>". - iApply iProto_le_swap. iIntros (x1 x2) "/= HP1 HP2". + iApply iProto_le_swap. iIntros (x1 x2) "/= HS1 HS2". iExists _, _, (tele_app (TT:=[tele _]) (λ x2, (x2, A2 x2, (P:iProto Σ)))), (tele_app (TT:=[tele _]) (λ x1, (x1, A1 x1, (P:iProto Σ)))), x2, x1; simpl. do 2 (iSplit; [done|]). - iFrame "HP1 HP2". + iFrame "HS1 HS2". iModIntro. do 2 (iSplitR; [iApply iProto_le_refl|]). by iFrame. Qed. Lemma lsty_select_le_subseteq (Ps1 Ps2 : gmap Z (lsty Σ)) : Ps2 ⊆ Ps1 → - ⊢ lsty_select Ps1 <p: lsty_select Ps2. + ⊢ lsty_select Ps1 <s: lsty_select Ps2. Proof. iIntros (Hsub) "!>". iApply iProto_le_send; simpl. @@ -231,8 +231,8 @@ Section subtype. Qed. Lemma lsty_select_le (Ps1 Ps2 : gmap Z (lsty Σ)) : - (▷ [∗ map] i ↦ P1;P2 ∈ Ps1; Ps2, P1 <p: P2) -∗ - lsty_select Ps1 <p: lsty_select Ps2. + (▷ [∗ map] i ↦ S1;S2 ∈ Ps1; Ps2, S1 <s: S2) -∗ + lsty_select Ps1 <s: lsty_select Ps2. Proof. iIntros "#H1 !>". iApply iProto_le_send; simpl. @@ -250,7 +250,7 @@ Section subtype. Lemma lsty_branch_le_subseteq (Ps1 Ps2 : gmap Z (lsty Σ)) : Ps1 ⊆ Ps2 → - ⊢ lsty_branch Ps1 <p: lsty_branch Ps2. + ⊢ lsty_branch Ps1 <s: lsty_branch Ps2. Proof. iIntros (Hsub) "!>". iApply iProto_le_recv; simpl. @@ -267,8 +267,8 @@ Section subtype. Qed. Lemma lsty_branch_le (Ps1 Ps2 : gmap Z (lsty Σ)) : - (▷ [∗ map] i ↦ P1;P2 ∈ Ps1; Ps2, P1 <p: P2) -∗ - lsty_branch Ps1 <p: lsty_branch Ps2. + (▷ [∗ map] i ↦ S1;S2 ∈ Ps1; Ps2, S1 <s: S2) -∗ + lsty_branch Ps1 <s: lsty_branch Ps2. Proof. iIntros "#H1 !>". iApply iProto_le_recv. iIntros (x) ">H !>"; iDestruct "H" as %Hsome. @@ -283,30 +283,30 @@ Section subtype. + iPureIntro. by apply lookup_lookup_total; naive_solver. Qed. - Lemma lsty_app_le P11 P12 P21 P22 : - (P11 <p: P21) -∗ (P12 <p: P22) -∗ - (P11 <++> P12) <p: (P21 <++> P22). + Lemma lsty_app_le S11 S12 S21 S22 : + (S11 <s: S21) -∗ (S12 <s: S22) -∗ + (S11 <++> S12) <s: (S21 <++> S22). Proof. iIntros "#H1 #H2 !>". by iApply iProto_le_app. Qed. - Lemma lsty_dual_le P1 P2 : P2 <p: P1 -∗ lsty_dual P1 <p: lsty_dual P2. + Lemma lsty_dual_le S1 S2 : S2 <s: S1 -∗ lsty_dual S1 <s: lsty_dual S2. Proof. iIntros "#H !>". by iApply iProto_le_dual. Qed. Lemma lsty_rec_le_1 (C : lsty Σ → lsty Σ) `{!Contractive C} : - ⊢ lsty_rec C <p: C (lsty_rec C). + ⊢ lsty_rec C <s: C (lsty_rec C). Proof. rewrite {1}/lsty_rec {1}fixpoint_unfold {1}/lsty_rec1. iApply lsty_le_refl. Qed. Lemma lsty_rec_le_2 (C : lsty Σ → lsty Σ) `{!Contractive C} : - ⊢ C (lsty_rec C) <p: lsty_rec C. + ⊢ C (lsty_rec C) <s: lsty_rec C. Proof. rewrite {2}/lsty_rec {1}fixpoint_unfold {1}/lsty_rec1. iApply lsty_le_refl. Qed. Lemma lsty_rec_le `{Contractive C1, Contractive C2} : - (□ ∀ P P', ▷ (P <p: P') -∗ C1 P <p: C2 P') -∗ - lsty_rec C1 <p: lsty_rec C2. + (□ ∀ S S', ▷ (S <s: S') -∗ C1 S <s: C2 S') -∗ + lsty_rec C1 <s: lsty_rec C2. Proof. iIntros "#Hle !>". iLöb as "IH". @@ -318,8 +318,8 @@ Section subtype. iNext. iApply "IH". Qed. - Lemma lty_chan_le P1 P2 : - ▷ (P1 <p: P2) -∗ chan P1 <: chan P2. + Lemma lty_chan_le S1 S2 : + ▷ (S1 <s: S2) -∗ chan S1 <: chan S2. Proof. iIntros "#Hle" (v) "!> H". iApply (iProto_mapsto_le with "H [Hle]"). eauto. diff --git a/theories/logrel/types.v b/theories/logrel/types.v index d456a3c..01670e0 100644 --- a/theories/logrel/types.v +++ b/theories/logrel/types.v @@ -699,8 +699,8 @@ Section properties. Proof. solve_proper. Qed. Definition chanalloc : val := λ: "u", let: "cc" := new_chan #() in "cc". - Lemma ltyped_chanalloc P: - ⊢ ∅ ⊨ chanalloc : () → (chan P * chan (lsty_dual P)). + Lemma ltyped_chanalloc S: + ⊢ ∅ ⊨ chanalloc : () → (chan S * chan (lsty_dual S)). Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iIntros "!>" (u) ">->". rewrite /chanalloc. wp_pures. @@ -710,8 +710,8 @@ Section properties. Qed. Definition chansend : val := λ: "chan" "val", send "chan" "val";; "chan". - Lemma ltyped_chansend A P: - ⊢ ∅ ⊨ chansend : chan (<!!> A; P) → A ⊸ chan P. + Lemma ltyped_chansend A S: + ⊢ ∅ ⊨ chansend : chan (<!!> A; S) → A ⊸ chan S. Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iIntros "!>" (c) "Hc". rewrite /chansend. wp_pures. @@ -720,8 +720,8 @@ Section properties. Qed. Definition chanrecv : val := λ: "chan", (recv "chan", "chan"). - Lemma ltyped_chanrecv A P: - ⊢ ∅ ⊨ chanrecv : chan (<??> A; P) → A * chan P. + Lemma ltyped_chanrecv A S: + ⊢ ∅ ⊨ chanrecv : chan (<??> A; S) → A * chan S. Proof. iIntros (vs) "!> HΓ /=". iApply wp_value. iIntros "!>" (c) "Hc". rewrite /chanrecv. wp_pures. @@ -730,17 +730,17 @@ Section properties. Qed. Definition chanselect : val := λ: "c" "i", send "c" "i";; "c". - Lemma ltyped_chanselect Γ (c : val) (i : Z) P Ps : - Ps !! i = Some P → - (Γ ⊨ c : chan (lsty_select Ps)) -∗ - Γ ⊨ chanselect c #i : chan P. + Lemma ltyped_chanselect Γ (c : val) (i : Z) S Ss : + Ss !! i = Some S → + (Γ ⊨ c : chan (lsty_select Ss)) -∗ + Γ ⊨ chanselect c #i : chan S. Proof. iIntros (Hin) "#Hc !>". iIntros (vs) "H /=". rewrite /chanselect. iMod (wp_value_inv with "(Hc H)") as "Hc'". wp_send with "[]"; [by eauto|]. - rewrite (lookup_total_correct Ps i P)=> //. + rewrite (lookup_total_correct Ss i S)=> //. by wp_pures. Qed. @@ -749,10 +749,10 @@ Section properties. let: "y" := recv "c" in switch_body "y" 0 xs (assert: #false) $ λ i, ("f" +:+ pretty i) "c". - Lemma ltyped_chanbranch Ps A xs : - (∀ x, x ∈ xs ↔ is_Some (Ps !! x)) → - ⊢ ∅ ⊨ chanbranch xs : chan (lsty_branch Ps) ⊸ - lty_arr_list ((λ x, (chan (Ps !!! x) ⊸ A)%lty) <$> xs) A. + Lemma ltyped_chanbranch Ss A xs : + (∀ x, x ∈ xs ↔ is_Some (Ss !! x)) → + ⊢ ∅ ⊨ chanbranch xs : chan (lsty_branch Ss) ⊸ + lty_arr_list ((λ x, (chan (Ss !!! x) ⊸ A)%lty) <$> xs) A. Proof. iIntros (Hdom) "!>". iIntros (vs) "Hvs". iApply wp_value. iIntros (c) "Hc". wp_lam. -- GitLab