diff --git a/theories/channel/proto_channel.v b/theories/channel/proto_channel.v index 398e9cc6a3be4082aad26251a9a6dce5795af183..b8e22453c00c059da2fba5bf77e0f95b12cc1ba6 100644 --- a/theories/channel/proto_channel.v +++ b/theories/channel/proto_channel.v @@ -85,7 +85,8 @@ Program Definition iProto_message_def {Σ} {TT : tele} (a : action) Next Obligation. solve_proper. Qed. Definition iProto_message_aux : seal (@iProto_message_def). by eexists. Qed. Definition iProto_message := iProto_message_aux.(unseal). -Definition iProto_message_eq : @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq). +Definition iProto_message_eq : + @iProto_message = @iProto_message_def := iProto_message_aux.(seal_eq). Arguments iProto_message {_ _} _ _%proto. Instance: Params (@iProto_message) 3 := {}. @@ -94,13 +95,15 @@ Notation "< a > x1 .. xn , 'MSG' v {{ P } } ; p" := a (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ λ x1, .. (λ xn, (v%V,P%I,p%proto)) ..)) - (at level 20, a at level 10, x1 binder, xn binder, v at level 20, P, p at level 200) : proto_scope. + (at level 20, a at level 10, x1 binder, xn binder, + v at level 20, P, p at level 200) : proto_scope. Notation "< a > x1 .. xn , 'MSG' v ; p" := (iProto_message a (tele_app (TT:=TeleS (λ x1, .. (TeleS (λ xn, TeleO)) .. )) $ λ x1, .. (λ xn, (v%V,True%I,p%proto)) ..)) - (at level 20, a at level 10, x1 binder, xn binder, v at level 20, p at level 200) : proto_scope. + (at level 20, a at level 10, x1 binder, xn binder, + v at level 20, p at level 200) : proto_scope. Notation "< a > 'MSG' v {{ P } } ; p" := (iProto_message a @@ -264,7 +267,8 @@ Definition mapsto_proto_def `{!proto_chanG Σ, !heapG Σ} inv protoN (proto_inv γ))%I. Definition mapsto_proto_aux : seal (@mapsto_proto_def). by eexists. Qed. Definition mapsto_proto {Σ pΣ hΣ} := mapsto_proto_aux.(unseal) Σ pΣ hΣ. -Definition mapsto_proto_eq : @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq). +Definition mapsto_proto_eq : + @mapsto_proto = @mapsto_proto_def := mapsto_proto_aux.(seal_eq). Arguments mapsto_proto {_ _ _} _ _%proto. Instance: Params (@mapsto_proto) 4 := {}. @@ -372,7 +376,8 @@ Section proto. Proof. apply (ne_proper_2 _). Qed. Lemma iProto_app_message {TT} a (pc : TT → val * iProp Σ * iProto Σ) p2 : - (iProto_message a pc <++> p2)%proto ≡ iProto_message a (prod_map id (flip iProto_app p2) ∘ pc). + (iProto_message a pc <++> p2)%proto + ≡ iProto_message a (prod_map id (flip iProto_app p2) ∘ pc). Proof. rewrite /iProto_app iProto_message_eq /iProto_message_def proto_app_message. by f_equiv=> v f /=.