From aa527705207f8f38fadcbda98c35eea4680e1b9a Mon Sep 17 00:00:00 2001 From: Jonas Kastberg Hinrichsen <jkas@itu.dk> Date: Wed, 8 May 2019 20:34:48 +0200 Subject: [PATCH] Turned list_sort generic, so the service takes compare in protocol --- theories/examples/list_sort.v | 443 ++++++++++++++++++---------------- 1 file changed, 235 insertions(+), 208 deletions(-) diff --git a/theories/examples/list_sort.v b/theories/examples/list_sort.v index 126023e..6a1af42 100644 --- a/theories/examples/list_sort.v +++ b/theories/examples/list_sort.v @@ -11,221 +11,238 @@ Require Import Omega. Section ListSortExample. Context `{!heapG Σ} `{logrelG val Σ} (N : namespace). - Definition lsplit_ref : val := - λ: "xs", let: "ys_zs" := lsplit !"xs" in - (ref (Fst "ys_zs"), ref (Snd ("ys_zs"))). + Section SortService. + Context `{EncDec T}. + Context (R : relation T) `{!Total R} `{∀ x y, Decision (R x y)}. - Lemma lsplit_ref_spec lxs (x : Z) (xs : list Z) : - {{{ lxs ↦ encode (x::xs) }}} - lsplit_ref #lxs - {{{ lys lzs ys zs, RET (#lys,#lzs); - ⌜(x::xs) = ys++zs⌠∗ - lxs ↦ encode (x::xs) ∗ - lys ↦ encode ys ∗ - lzs ↦ encode zs }}}. - Proof. - iIntros (Φ) "Hhd HΦ". - wp_lam. wp_load. wp_apply (lsplit_spec (T:=Z))=> //. iIntros (ys zs <-). - wp_alloc lzs as "Hlzs". - wp_alloc lys as "Hlys". - wp_pures. - iApply "HΦ". - eauto 10 with iFrame. - Qed. + Definition lsplit_ref : val := + λ: "xs", let: "ys_zs" := lsplit !"xs" in + (ref (Fst "ys_zs"), ref (Snd ("ys_zs"))). - Definition compare_vals : val := - λ: "x" "y", "x" ≤ "y". + Lemma lsplit_ref_spec lxs (x : T) (xs : list T) : + {{{ lxs ↦ encode (x::xs) }}} + lsplit_ref #lxs + {{{ lys lzs ys zs, RET (#lys,#lzs); + ⌜(x::xs) = ys++zs⌠∗ + lxs ↦ encode (x::xs) ∗ + lys ↦ encode ys ∗ + lzs ↦ encode zs }}}. + Proof. + iIntros (Φ) "Hhd HΦ". + wp_lam. wp_load. wp_apply (lsplit_spec)=> //. iIntros (ys zs <-). + wp_alloc lzs as "Hlzs". + wp_alloc lys as "Hlys". + wp_pures. + iApply "HΦ". + eauto 10 with iFrame. + Qed. - Lemma compare_vals_spec (x y : Z) : - {{{ True }}} - compare_vals (encode x) (encode y) - {{{ RET (encode (bool_decide (x ≤ y))); True }}}. - Proof. iIntros (Φ) "_ HΦ". wp_lam. wp_pures. by iApply "HΦ". Qed. - - Definition lmerge : val := - rec: "go" "hys" "hzs" := - match: "hys" with - NONE => "hzs" - | SOME "_" => - match: "hzs" with - NONE => "hys" + Definition lmerge : val := + rec: "go" "cmp" "hys" "hzs" := + match: "hys" with + NONE => "hzs" | SOME "_" => - let: "y" := lhead "hys" in - let: "z" := lhead "hzs" in - if: (compare_vals "y" "z") - then lcons "y" ("go" (ltail "hys") "hzs") - else lcons "z" ("go" "hys" (ltail "hzs")) - end - end. + match: "hzs" with + NONE => "hys" + | SOME "_" => + let: "y" := lhead "hys" in + let: "z" := lhead "hzs" in + if: ("cmp" "y" "z") + then lcons "y" ("go" "cmp" (ltail "hys") "hzs") + else lcons "z" ("go" "cmp" "hys" (ltail "hzs")) + end + end. - Lemma list_merge_emp1 (ys : list Z) : list_merge (≤) [] ys = ys. - Proof. induction ys; eauto. Qed. + Lemma list_merge_emp1 (ys : list T) : list_merge (R) [] ys = ys. + Proof. induction ys; eauto. Qed. - Lemma list_merge_emp2 (xs : list Z) : list_merge (≤) xs [] = xs. - Proof. induction xs; eauto. Qed. + Lemma list_merge_emp2 (xs : list T) : list_merge (R) xs [] = xs. + Proof. induction xs; eauto. Qed. - Lemma lmerge_spec (ys zs : list Z) : - {{{ True }}} - lmerge (encode ys) (encode zs) - {{{ RET (encode (list_merge (≤) ys zs)); True }}}. - Proof. - revert ys zs. - iLöb as "IH". - iIntros (ys zs Φ _) "HΦ". - wp_lam. - destruct ys as [|y ys]. - { wp_pures. rewrite list_merge_emp1. by iApply ("HΦ"). } - destruct zs as [|z zs]. - { wp_pures. rewrite list_merge_emp2. by iApply ("HΦ"). } - wp_apply (lhead_spec (T:=Z))=> //; iIntros "_". - wp_apply (lhead_spec (T:=Z))=> //; iIntros "_". - wp_apply (compare_vals_spec)=> //; iIntros "_". - rewrite list_merge_cons. - destruct (decide (y ≤ z)). - - rewrite bool_decide_true=> //. - wp_apply (ltail_spec (T:=Z))=> //; iIntros (_). - wp_apply ("IH")=> //; iIntros (_). - wp_apply (lcons_spec (T:=Z))=> //. - - rewrite bool_decide_false=> //. - wp_apply (ltail_spec (T:=Z))=> //; iIntros (_). - wp_apply ("IH")=> //; iIntros (_). - wp_apply (lcons_spec (T:=Z))=> //. - Qed. + Definition cmp_spec (cmp : val) : iProp Σ := + (∀ x y, {{{ True }}} + cmp (encode x) (encode y) + {{{ RET encode (bool_decide (R x y)); True}}})%I. - Definition lmerge_ref : val := - λ: "lxs" "hys" "hzs", - "lxs" <- lmerge "hys" "hzs". + Lemma lmerge_spec (cmp : val) (ys zs : list T) : + cmp_spec cmp → + {{{ True }}} + lmerge cmp (encode ys) (encode zs) + {{{ RET (encode (list_merge (R) ys zs)); True }}}. + Proof. + revert ys zs. + iLöb as "IH". + iIntros (ys zs Hcmp_spec Φ _) "HΦ". + wp_lam. + destruct ys as [|y ys]. + { wp_pures. rewrite list_merge_emp1. by iApply ("HΦ"). } + destruct zs as [|z zs]. + { wp_pures. rewrite list_merge_emp2. by iApply ("HΦ"). } + wp_apply (lhead_spec)=> //; iIntros "_". + wp_apply (lhead_spec)=> //; iIntros "_". + wp_apply (Hcmp_spec)=> //; iIntros "_". + rewrite list_merge_cons. + destruct (decide (R y z)). + - rewrite bool_decide_true=> //. + wp_apply (ltail_spec)=> //; iIntros (_). + wp_apply ("IH")=> //; iIntros (_). + wp_apply (lcons_spec)=> //. + - rewrite bool_decide_false=> //. + wp_apply (ltail_spec)=> //; iIntros (_). + wp_apply ("IH")=> //; iIntros (_). + wp_apply (lcons_spec)=> //. + Qed. - Lemma lmerge_ref_spec ldx tmp ys zs : - {{{ ldx ↦ tmp }}} - lmerge_ref #ldx (encode ys) (encode zs) - {{{ RET #(); ldx ↦ encode (list_merge (≤) ys zs) }}}. - Proof. - iIntros (Φ) "Hldx HΦ". - wp_lam. - wp_apply (lmerge_spec ys zs)=> //. - iIntros (_). - wp_store. - by iApply ("HΦ"). - Qed. + Definition lmerge_ref : val := + λ: "cmp" "lxs" "hys" "hzs", + "lxs" <- lmerge "cmp" "hys" "hzs". - Definition list_sort_service : val := - rec: "go" "c" := - let: "xs" := recv "c" #Right in - if: llength (!"xs") ≤ #1 - then send "c" #Right "xs" - else let: "ys_zs" := lsplit_ref "xs" in - let: "ys" := Fst "ys_zs" in - let: "zs" := Snd "ys_zs" in - let: "cy" := new_chan #() in Fork("go" "cy");; - let: "cz" := new_chan #() in Fork("go" "cz");; - send "cy" #Left "ys";; - send "cz" #Left "zs";; - let: "ys" := recv "cy" #Left in - let: "zs" := recv "cz" #Left in - lmerge_ref "xs" !"ys" !"zs";; - send "c" #Right "xs". + Lemma lmerge_ref_spec (cmp : val) ldx tmp ys zs : + cmp_spec cmp → + {{{ ldx ↦ tmp }}} + lmerge_ref cmp #ldx (encode ys) (encode zs) + {{{ RET #(); ldx ↦ encode (list_merge R ys zs) }}}. + Proof. + iIntros (cmp_spec Φ) "Hldx HΦ". + wp_lam. + wp_apply (lmerge_spec cmp ys zs)=> //. + iIntros (_). + wp_store. + by iApply ("HΦ"). + Qed. - Lemma list_sort_service_spec γ c xs : - {{{ ⟦ c @ Right : (<?> l @ l ↦ encode xs, - <!> l' @ - ⌜l = l'⌠∗ (∃ ys : list Z, - l' ↦ encode ys ∗ - ⌜Sorted (≤) ys⌠∗ - ⌜Permutation ys xsâŒ), - TEnd) ⟧{N,γ} }}} - list_sort_service c - {{{ RET #(); ⟦ c @ Right : TEnd ⟧{N,γ} }}}. - Proof. - revert γ c xs. - iLöb as "IH". - iIntros (γ c xs Φ) "Hstr HΦ". - wp_lam. - wp_apply (recv_st_spec N loc with "Hstr"). - iIntros (v) "Hstr". - iDestruct "Hstr" as "[Hstr HP]". - wp_load. - destruct xs. - { - wp_apply (llength_spec (T:=Z))=> //; iIntros (_). - wp_apply (send_st_spec N loc with "[HP Hstr]")=> //. iFrame. - eauto 10 with iFrame. - } - destruct xs. - { - wp_apply (llength_spec (T:=Z))=> //; iIntros (_). - wp_apply (send_st_spec N loc with "[HP Hstr]")=> //. iFrame. - eauto 10 with iFrame. - } - wp_apply (llength_spec (T:=Z))=> //; iIntros (_). - wp_pures. - assert (bool_decide (S (S (length xs)) ≤ 1) = false) as HSS. - { apply bool_decide_false. lia. } - rewrite HSS. - wp_apply (lsplit_ref_spec with "HP"); - iIntros (hdy hdz ys zs) "(Heq & Hhdx & Hhdy & Hhdz)". - iDestruct "Heq" as %->. - wp_apply (new_chan_st_spec N - (<!> l @ l ↦ encode ys, - <?> l' @ ⌜l = l'⌠∗ - (∃ ys' : list Z, - l' ↦ encode ys' ∗ - ⌜Sorted (≤) ys'⌠∗ - ⌜Permutation ys' ysâŒ), - TEnd))=>//; - iIntros (cy γy) "[Hstly Hstry]". - wp_apply (wp_fork with "[Hstry]"). - { iNext. iApply ("IH" with "Hstry"). iNext. by iIntros "Hstry". } - wp_apply (new_chan_st_spec N - (<!> l @ l ↦ encode zs, - <?> l' @ ⌜l = l'⌠∗ - (∃ zs' : list Z, - l' ↦ encode zs' ∗ - ⌜Sorted (≤) zs'⌠∗ - ⌜Permutation zs' zsâŒ), - TEnd))=>//; - iIntros (cz γz) "[Hstlz Hstrz]". - wp_apply (wp_fork with "[Hstrz]"). - { iNext. iApply ("IH" with "Hstrz"). iNext. by iIntros "Hstrz". } - wp_apply (send_st_spec N loc with "[Hhdy Hstly]"). iFrame. - iIntros "Hstly". - wp_apply (send_st_spec N loc with "[Hhdz Hstlz]"). iFrame. - iIntros "Hstlz". - wp_apply (recv_st_spec N loc with "Hstly"). - iIntros (ly') "[Hstly Hys']". - iDestruct "Hys'" as (<- ys') "(Hys' & Hys'_sorted_of)". - iDestruct "Hys'_sorted_of" as %[Hys'_sorted Hys'_perm]. - wp_apply (recv_st_spec N loc with "Hstlz"). - iIntros (lz') "[Hstlz Hzs']". - iDestruct "Hzs'" as (<- zs') "(Hzs' & Hzs'_sorted_of)". - iDestruct "Hzs'_sorted_of" as %[Hzs'_sorted Hzs'_perm]. - wp_load. - wp_load. - wp_apply (lmerge_ref_spec with "Hhdx")=> //. - iIntros "Hhdx". - wp_apply (send_st_spec N loc with "[Hstr Hhdx]"). - { - iFrame. - iSplit=> //. - iExists (list_merge (≤) ys' zs'). - iSplit=> //. - iPureIntro. - split. - - apply Sorted_list_merge=> //. - { intros x y. lia. } (* Why is this needed? *) - - rewrite merge_Permutation. - by apply Permutation_app. - } - iIntros "Hstr". - by iApply "HΦ". - Qed. + Definition list_sort_service : val := + rec: "go" "c" := + let: "cmp" := recv "c" #Right in + let: "xs" := recv "c" #Right in + if: llength (!"xs") ≤ #1 + then send "c" #Right "xs" + else let: "ys_zs" := lsplit_ref "xs" in + let: "ys" := Fst "ys_zs" in + let: "zs" := Snd "ys_zs" in + let: "cy" := new_chan #() in Fork("go" "cy");; + let: "cz" := new_chan #() in Fork("go" "cz");; + send "cy" #Left "cmp";; + send "cy" #Left "ys";; + send "cz" #Left "cmp";; + send "cz" #Left "zs";; + let: "ys" := recv "cy" #Left in + let: "zs" := recv "cz" #Left in + lmerge_ref "cmp" "xs" !"ys" !"zs";; + send "c" #Right "xs". + + Definition sort_protocol xs := + (<?> cmp @ ⌜cmp_spec cmpâŒ, + <?> l @ l ↦ encode xs, + <!> l' @ ⌜l = l'⌠∗ + (∃ ys : list T, + l' ↦ encode ys ∗ + ⌜Sorted (R) ys⌠∗ + ⌜Permutation ys xsâŒ), + TEnd)%stype. + + Lemma list_sort_service_spec γ c xs : + {{{ ⟦ c @ Right : sort_protocol xs ⟧{N,γ} }}} + list_sort_service c + {{{ RET #(); ⟦ c @ Right : TEnd ⟧{N,γ} }}}. + Proof. + revert γ c xs. + iLöb as "IH". + iIntros (γ c xs Φ) "Hstr HΦ". + wp_lam. + wp_apply (recv_st_spec N val with "Hstr"). + iIntros (cmp) "[Hstr cmp_spec]". + iDestruct ("cmp_spec") as %Hcmp_spec. + wp_pures. + wp_apply (recv_st_spec N loc with "Hstr"). + iIntros (v) "Hstr". + iDestruct "Hstr" as "[Hstr HP]". + wp_load. + destruct xs. + { + wp_apply (llength_spec)=> //; iIntros (_). + wp_apply (send_st_spec N loc with "[HP Hstr]")=> //. iFrame. + eauto 10 with iFrame. + } + destruct xs. + { + wp_apply (llength_spec)=> //; iIntros (_). + wp_apply (send_st_spec N loc with "[HP Hstr]")=> //. iFrame. + eauto 10 with iFrame. + } + wp_apply (llength_spec)=> //; iIntros (_). + wp_pures. + assert (bool_decide (S (S (length xs)) ≤ 1) = false) as HSS. + { apply bool_decide_false. lia. } + rewrite HSS. + wp_apply (lsplit_ref_spec with "HP"); + iIntros (hdy hdz ys zs) "(Heq & Hhdx & Hhdy & Hhdz)". + iDestruct "Heq" as %->. + wp_apply (new_chan_st_spec N _ (sort_protocol ys))=> //. + iIntros (cy γy) "[Hstly Hstry]". + wp_apply (wp_fork with "[Hstry]"). + { iNext. iApply ("IH" with "Hstry"). iNext. by iIntros "Hstry". } + wp_apply (new_chan_st_spec N _ (sort_protocol zs))=> //. + iIntros (cz γz) "[Hstlz Hstrz]". + wp_apply (wp_fork with "[Hstrz]"). + { iNext. iApply ("IH" with "Hstrz"). iNext. by iIntros "Hstrz". } + wp_apply (send_st_spec N val with "[Hstly]"). iFrame. done. + iIntros "Hstly". + wp_apply (send_st_spec N loc with "[Hhdy Hstly]"). iFrame. + iIntros "Hstly". + wp_apply (send_st_spec N val with "[Hstlz]"). iFrame. done. + iIntros "Hstlz". + wp_apply (send_st_spec N loc with "[Hhdz Hstlz]"). iFrame. + iIntros "Hstlz". + wp_apply (recv_st_spec N loc with "Hstly"). + iIntros (ly') "[Hstly Hys']". + iDestruct "Hys'" as (<- ys') "(Hys' & Hys'_sorted_of)". + iDestruct "Hys'_sorted_of" as %[Hys'_sorted Hys'_perm]. + wp_apply (recv_st_spec N loc with "Hstlz"). + iIntros (lz') "[Hstlz Hzs']". + iDestruct "Hzs'" as (<- zs') "(Hzs' & Hzs'_sorted_of)". + iDestruct "Hzs'_sorted_of" as %[Hzs'_sorted Hzs'_perm]. + wp_load. + wp_load. + wp_pures. + wp_apply (lmerge_ref_spec with "[Hhdx]")=> //. + iIntros "Hhdx". + wp_apply (send_st_spec N loc with "[Hstr Hhdx]"). + { + iFrame. + iSplit=> //. + iExists (list_merge R ys' zs'). + iSplit=> //. + iPureIntro. + split. + - apply Sorted_list_merge=> //. + - rewrite merge_Permutation. + by apply Permutation_app. + } + iIntros "Hstr". + by iApply "HΦ". + Qed. + End SortService. + + Definition compare_vals : val := + λ: "x" "y", "x" ≤ "y". + + Instance total_le : Total Z.le. + Proof. intros x y. lia. Qed. + + Lemma compare_vals_spec (x y : Z) : + {{{ True }}} + compare_vals (encode x) (encode y) + {{{ RET (encode (bool_decide (x ≤ y))); True }}}. + Proof. iIntros (Φ) "_ HΦ". wp_lam. wp_pures. by iApply "HΦ". Qed. Definition list_sort : val := λ: "xs", let: "c" := new_chan #() in Fork(list_sort_service "c");; - send "c" #Left "xs";; - recv "c" #Left. + send "c" #Left compare_vals;; + send "c" #Left "xs";; + recv "c" #Left. Lemma list_sort_spec l xs : {{{ l ↦ encode xs }}} @@ -234,19 +251,30 @@ Section ListSortExample. Proof. iIntros (Φ) "Hc HΦ". wp_lam. - wp_apply (new_chan_st_spec N - (<!> l @ l ↦ encode xs, - <?> l' @ ⌜l = l'⌠∗ - (∃ ys : list Z, - l' ↦ encode ys ∗ - ⌜Sorted (≤) ys⌠∗ - ⌜Permutation ys xsâŒ), TEnd))=>//. + wp_apply (new_chan_st_spec N _ (sort_protocol (≤) xs))=> //. iIntros (c γ) "[Hstl Hstr]". wp_apply (wp_fork with "[Hstr]"). { - iApply (list_sort_service_spec γ c xs with "[Hstr]"). iFrame. + iApply (list_sort_service_spec (≤) γ c xs with "Hstr"). iNext. iNext. iIntros "Hstr". done. } + wp_apply (send_st_spec N val with "[$Hstl]"). + { + iPureIntro. + iIntros (x y Φ'). + iModIntro. iIntros (_) "HΦ". + iApply compare_vals_spec=> //. + iNext. + iIntros (_). + destruct (decide (x ≤ y)). + - rewrite bool_decide_true=>//. + rewrite bool_decide_true=>//. + by iApply "HΦ". + - rewrite bool_decide_false=>//. + rewrite bool_decide_false=>//. + by iApply "HΦ". + } + iIntros "Hstl". wp_apply (send_st_spec N loc with "[Hc $Hstl]"). iFrame. iIntros "Hstl". wp_apply (recv_st_spec N loc with "Hstl"). @@ -254,5 +282,4 @@ Section ListSortExample. iDestruct "HP" as (<- ys) "[Hys Hys_sorted_of]". iApply "HΦ". iFrame. Qed. - End ListSortExample. -- GitLab