From 7175500980cf458698f43d1909e8b68b9adfbb03 Mon Sep 17 00:00:00 2001 From: Jonas Kastberg Hinrichsen <jkas@itu.dk> Date: Tue, 11 Jun 2019 19:51:45 +0200 Subject: [PATCH] Refactoring: Definitions stype -> proto, st -> prot --- theories/examples/list_sort.v | 4 +- theories/proto/branching.v | 42 ++--- theories/proto/proto_def.v | 318 +++++++++++++++++----------------- theories/proto/proto_enc.v | 62 +++---- theories/proto/proto_specs.v | 244 +++++++++++++------------- 5 files changed, 335 insertions(+), 335 deletions(-) diff --git a/theories/examples/list_sort.v b/theories/examples/list_sort.v index 630702e..150ae91 100644 --- a/theories/examples/list_sort.v +++ b/theories/examples/list_sort.v @@ -137,7 +137,7 @@ Section ListSortExample. lmerge_ref "cmp" "xs" !"ys" !"zs";; send "c" #Right "xs". - Definition sort_protocol xs := + Definition sort_protocol xs : proto val (iProp Σ) := (<?> cmp @ cmp_spec cmp, <?> l @ l ↦ encode xs, <!> l' @ ⌜l = l'⌠∗ @@ -145,7 +145,7 @@ Section ListSortExample. l' ↦ encode ys ∗ ⌜Sorted (R) ys⌠∗ ⌜Permutation ys xsâŒ), - TEnd)%stype. + TEnd). Lemma list_sort_service_spec γ c xs : {{{ ⟦ c @ Right : sort_protocol xs ⟧{N,γ} }}} diff --git a/theories/proto/branching.v b/theories/proto/branching.v index b511fa2..4380bca 100644 --- a/theories/proto/branching.v +++ b/theories/proto/branching.v @@ -9,21 +9,21 @@ Section DualBranch. Context `{PROP : bi}. Definition TSB (a : action) - (st1 st2 : stype val PROP) : stype val PROP := - TSR' a (λ _, True)%I (λ v, if v : bool then st1 else st2). + (prot1 prot2 : proto val PROP) : proto val PROP := + TSR' a (λ _, True)%I (λ v, if v : bool then prot1 else prot2). - Global Instance is_dual_tsb a1 a2 st1 st1' st2 st2' : + Global Instance is_dual_tsb a1 a2 proto1 proto1' proto2 proto2' : IsDualAction a1 a2 → - IsDualStype st1 st1' → IsDualStype st2 st2' → - IsDualStype (TSB a1 st1 st2) (TSB a2 st1' st2'). + IsDualProto proto1 proto1' → IsDualProto proto2 proto2' → + IsDualProto (TSB a1 proto1 proto2) (TSB a2 proto1' proto2'). Proof. rewrite /IsDualAction. - rewrite /IsDualStype. + rewrite /IsDualProto. intros Ha Hst1 Hst2. destruct a1. - simpl. simpl in Ha. rewrite -Ha. - rewrite -(stype_force_eq (dual_stype _)). + rewrite -(proto_force_eq (dual_proto _)). constructor. f_equiv. f_equiv. @@ -31,7 +31,7 @@ Section DualBranch. by destruct b. apply is_dual_end. - simpl. simpl in Ha. rewrite -Ha. - rewrite -(stype_force_eq (dual_stype _)). + rewrite -(proto_force_eq (dual_proto _)). constructor. f_equiv. f_equiv. @@ -42,8 +42,8 @@ Section DualBranch. End DualBranch. Global Typeclasses Opaque TSB. -Infix "<+>" := (TSB Send) (at level 85) : stype_scope. -Infix "<&>" := (TSB Receive) (at level 85) : stype_scope. +Infix "<+>" := (TSB Send) (at level 85) : proto_scope. +Infix "<&>" := (TSB Receive) (at level 85) : proto_scope. Section branching_specs. Context `{!heapG Σ} (N : namespace). @@ -53,15 +53,15 @@ Section branching_specs. λ: "c" "s" "b", send "c" "s" "b". - Lemma select_st_spec st1 st2 γ c s (b : side) : - {{{ ⟦ c @ s : st1 <+> st2 ⟧{N,γ} }}} + Lemma select_st_spec proto1 proto2 γ c s (b : side) : + {{{ ⟦ c @ s : proto1 <+> proto2 ⟧{N,γ} }}} select c #s #b - {{{ RET #(); ⟦ c @ s : (if b then st1 else st2) ⟧{N,γ} }}}. + {{{ RET #(); ⟦ c @ s : (if b then proto1 else proto2) ⟧{N,γ} }}}. Proof. - iIntros (Φ) "Hst HΦ". + iIntros (Φ) "Hproto HΦ". wp_pures. wp_lam. wp_pures. rewrite /TSB. - wp_apply (send_st_spec N bool with "[$Hst //]"); + wp_apply (send_st_spec N bool with "[$Hproto //]"); iIntros "Hstl". iApply "HΦ". by destruct b. @@ -73,17 +73,17 @@ Section branching_specs. then "b1" else "b2". - Lemma branch_st_spec st1 st2 γ c s (b1 b2 : val) : - {{{ ⟦ c @ s : st1 <&> st2 ⟧{N,γ} }}} + Lemma branch_st_spec proto1 proto2 γ c s (b1 b2 : val) : + {{{ ⟦ c @ s : proto1 <&> proto2 ⟧{N,γ} }}} branch c #s b1 b2 - {{{ v, RET v; (⌜v = b1%V⌠∧ ⟦ c @ s : st1 ⟧{N,γ}) ∨ - (⌜v = b2%V⌠∧ ⟦ c @ s : st2 ⟧{N,γ})}}}. + {{{ v, RET v; (⌜v = b1%V⌠∧ ⟦ c @ s : proto1 ⟧{N,γ}) ∨ + (⌜v = b2%V⌠∧ ⟦ c @ s : proto2 ⟧{N,γ})}}}. Proof. iIntros (Φ'). - iIntros "Hst HΦ'". + iIntros "Hproto HΦ'". wp_pures. wp_lam. rewrite /TSB. simpl. - wp_apply (recv_st_spec N bool with "[$Hst //]"). + wp_apply (recv_st_spec N bool with "[$Hproto //]"). iIntros (v) "[Hstl _]". destruct v. - wp_pures. iApply ("HΦ'"). eauto with iFrame. diff --git a/theories/proto/proto_def.v b/theories/proto/proto_def.v index 156af33..72af0d6 100644 --- a/theories/proto/proto_def.v +++ b/theories/proto/proto_def.v @@ -14,273 +14,273 @@ Definition dual_action (a : action) : action := Instance dual_action_involutive : Involutive (=) dual_action. Proof. by intros []. Qed. -CoInductive stype (V A : Type) := +CoInductive proto (V A : Type) := | TEnd - | TSR (a : action) (P : V → A) (st : V → stype V A). + | TSR (a : action) (P : V → A) (prot : V → proto V A). Arguments TEnd {_ _}. Arguments TSR {_ _} _ _ _. Instance: Params (@TSR) 3. -Instance stype_inhabited V A : Inhabited (stype V A) := populate TEnd. +Instance stype_inhabited V A : Inhabited (proto V A) := populate TEnd. -CoFixpoint dual_stype {V A} (st : stype V A) : stype V A := - match st with +CoFixpoint dual_proto {V A} (prot : proto V A) : proto V A := + match prot with | TEnd => TEnd - | TSR a P st => TSR (dual_action a) P (λ v, dual_stype (st v)) + | TSR a P prot => TSR (dual_action a) P (λ v, dual_proto (prot v)) end. -Instance: Params (@dual_stype) 2. - -Delimit Scope stype_scope with stype. -Bind Scope stype_scope with stype. - -Notation "<!> x @ P , st" := - (TSR Send (λ x, P%I) (λ x, st%stype)) - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<?> x @ P , st" := - (TSR Receive (λ x, P%I) (λ x, st%stype)) - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<!> x , st" := (<!> x @ True, st%stype)%stype - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<?> x , st" := (<?> x @ True, st%stype)%stype - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<!> @ P , st" := (<!> x @ P x, st x)%stype - (at level 200, st at level 200) : stype_scope. -Notation "<?> @ P , st" := (<?> x @ P x, st x)%stype - (at level 200, st at level 200) : stype_scope. - -Section stype_ofe. +Instance: Params (@dual_proto) 2. + +Delimit Scope proto_scope with proto. +Bind Scope proto_scope with proto. + +Notation "<!> x @ P , prot" := + (TSR Send (λ x, P%I) (λ x, prot%proto)) + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<?> x @ P , prot" := + (TSR Receive (λ x, P%I) (λ x, prot%proto)) + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<!> x , prot" := (<!> x @ True, prot%proto)%proto + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<?> x , prot" := (<?> x @ True, prot%proto)%proto + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<!> @ P , prot" := (<!> x @ P x, prot x)%proto + (at level 200, prot at level 200) : proto_scope. +Notation "<?> @ P , prot" := (<?> x @ P x, prot x)%proto + (at level 200, prot at level 200) : proto_scope. + +Section proto_ofe. Context {V : Type}. Context {A : ofeT}. - CoInductive stype_equiv : Equiv (stype V A) := + CoInductive proto_equiv : Equiv (proto V A) := | TEnd_equiv : TEnd ≡ TEnd - | TSR_equiv a P1 P2 st1 st2 : + | TSR_equiv a P1 P2 prot1 prot2 : pointwise_relation V (≡) P1 P2 → - pointwise_relation V (≡) st1 st2 → - TSR a P1 st1 ≡ TSR a P2 st2. - Existing Instance stype_equiv. + pointwise_relation V (≡) prot1 prot2 → + TSR a P1 prot1 ≡ TSR a P2 prot2. + Existing Instance proto_equiv. - CoInductive stype_dist : Dist (stype V A) := + CoInductive proto_dist : Dist (proto V A) := | TEnd_dist n : TEnd ≡{n}≡ TEnd - | TSR_dist_0 a P1 P2 st1 st2 : + | TSR_dist_0 a P1 P2 prot1 prot2 : pointwise_relation V (dist 0) P1 P2 → - TSR a P1 st1 ≡{0}≡ TSR a P2 st2 - | TSR_dist_S n a P1 P2 st1 st2 : + TSR a P1 prot1 ≡{0}≡ TSR a P2 prot2 + | TSR_dist_S n a P1 P2 prot1 prot2 : pointwise_relation V (dist (S n)) P1 P2 → - pointwise_relation V (dist n) st1 st2 → - TSR a P1 st1 ≡{S n}≡ TSR a P2 st2. - Existing Instance stype_dist. + pointwise_relation V (dist n) prot1 prot2 → + TSR a P1 prot1 ≡{S n}≡ TSR a P2 prot2. + Existing Instance proto_dist. - Lemma TSR_dist n a P1 P2 st1 st2 : + Lemma TSR_dist n a P1 P2 prot1 prot2 : pointwise_relation V (dist n) P1 P2 → - pointwise_relation V (dist_later n) st1 st2 → - TSR a P1 st1 ≡{n}≡ TSR a P2 st2. + pointwise_relation V (dist_later n) prot1 prot2 → + TSR a P1 prot1 ≡{n}≡ TSR a P2 prot2. Proof. destruct n; by constructor. Defined. - Definition stype_ofe_mixin : OfeMixin (stype V A). + Definition proto_ofe_mixin : OfeMixin (proto V A). Proof. split. - - intros st1 st2. split. - + revert st1 st2. cofix IH; destruct 1 as [|a P1 P2 st1' st2' HP]=> n. + - intros prot1 prot2. split. + + revert prot1 prot2. cofix IH; destruct 1 as [|a P1 P2 prot1' prot2' HP]=> n. { constructor. } destruct n as [|n]. * constructor=> v. apply equiv_dist, HP. * constructor=> v. apply equiv_dist, HP. by apply IH. - + revert st1 st2. cofix IH=> -[|a1 P1 st1] -[|a2 P2 st2] Hst; - feed inversion (Hst O); subst; constructor=> v. - * apply equiv_dist=> n. feed inversion (Hst n); auto. - * apply IH=> n. feed inversion (Hst (S n)); auto. + + revert prot1 prot2. cofix IH=> -[|a1 P1 prot1] -[|a2 P2 prot2] Hprot; + feed inversion (Hprot O); subst; constructor=> v. + * apply equiv_dist=> n. feed inversion (Hprot n); auto. + * apply IH=> n. feed inversion (Hprot (S n)); auto. - intros n. split. - + revert n. cofix IH=> -[|n] [|a P st]; constructor=> v; auto. + + revert n. cofix IH=> -[|n] [|a P prot]; constructor=> v; auto. + revert n. cofix IH; destruct 1; constructor=> v; symmetry; auto. + revert n. cofix IH; destruct 1; inversion 1; constructor=> v; etrans; eauto. - cofix IH=> -[|n]; inversion 1; constructor=> v; try apply dist_S; auto. Qed. - Canonical Structure stypeC : ofeT := OfeT (stype V A) stype_ofe_mixin. + Canonical Structure protoC : ofeT := OfeT (proto V A) proto_ofe_mixin. - Definition stype_head (d : V -c> A) (st : stype V A) : V -c> A := - match st with TEnd => d | TSR a P st => P end. - Definition stype_tail (v : V) (st : stypeC) : later stypeC := - match st with TEnd => Next TEnd | TSR a P st => Next (st v) end. - Global Instance stype_head_ne d : NonExpansive (stype_head d). + Definition proto_head (d : V -c> A) (prot : proto V A) : V -c> A := + match prot with TEnd => d | TSR a P prot => P end. + Definition proto_tail (v : V) (prot : protoC) : later protoC := + match prot with TEnd => Next TEnd | TSR a P prot => Next (prot v) end. + Global Instance proto_head_ne d : NonExpansive (proto_head d). Proof. by destruct 1. Qed. - Global Instance stype_tail_ne v : NonExpansive (stype_tail v). + Global Instance proto_tail_ne v : NonExpansive (proto_tail v). Proof. destruct 1; naive_solver. Qed. - Definition stype_force (st : stype V A) : stype V A := - match st with + Definition proto_force (prot : proto V A) : proto V A := + match prot with | TEnd => TEnd - | TSR a P st => TSR a P st + | TSR a P prot => TSR a P prot end. - Lemma stype_force_eq st : stype_force st = st. - Proof. by destruct st. Defined. + Lemma proto_force_eq prot : proto_force prot = prot. + Proof. by destruct prot. Defined. - CoFixpoint stype_compl_go `{!Cofe A} (c : chain stypeC) : stypeC := + CoFixpoint proto_compl_go `{!Cofe A} (c : chain protoC) : protoC := match c O with | TEnd => TEnd - | TSR a P st => TSR a - (compl (chain_map (stype_head P) c) : V → A) - (λ v, stype_compl_go (later_chain (chain_map (stype_tail v) c))) + | TSR a P prot => TSR a + (compl (chain_map (proto_head P) c) : V → A) + (λ v, proto_compl_go (later_chain (chain_map (proto_tail v) c))) end. - Global Program Instance stype_cofe `{!Cofe A} : Cofe stypeC := - {| compl c := stype_compl_go c |}. + Global Program Instance proto_cofe `{!Cofe A} : Cofe protoC := + {| compl c := proto_compl_go c |}. Next Obligation. intros ? n c; rewrite /compl. revert c n. cofix IH=> c n. - rewrite -(stype_force_eq (stype_compl_go c)) /=. - destruct (c O) as [|a P st'] eqn:Hc0. + rewrite -(proto_force_eq (proto_compl_go c)) /=. + destruct (c O) as [|a P prot'] eqn:Hc0. - assert (c n ≡{0}≡ TEnd) as Hcn. { rewrite -Hc0 -(chain_cauchy c 0 n) //. lia. } by inversion Hcn. - - assert (c n ≡{0}≡ TSR a P st') as Hcn. + - assert (c n ≡{0}≡ TSR a P prot') as Hcn. { rewrite -Hc0 -(chain_cauchy c 0 n) //. lia. } - inversion Hcn as [|? P' ? st'' ? HP|]; subst. + inversion Hcn as [|? P' ? prot'' ? HP|]; subst. destruct n as [|n]; constructor. - + intros v. by rewrite (conv_compl 0 (chain_map (stype_head P) c) v) /= -H. - + intros v. by rewrite (conv_compl _ (chain_map (stype_head P) c) v) /= -H. - + intros v. assert (st'' v = later_car (stype_tail v (c (S n)))) as ->. + + intros v. by rewrite (conv_compl 0 (chain_map (proto_head P) c) v) /= -H. + + intros v. by rewrite (conv_compl _ (chain_map (proto_head P) c) v) /= -H. + + intros v. assert (prot'' v = later_car (proto_tail v (c (S n)))) as ->. { by rewrite -H /=. } apply IH. Qed. - Global Instance TSR_stype_contractive a n : + Global Instance TSR_proto_contractive a n : Proper (pointwise_relation _ (dist n) ==> pointwise_relation _ (dist_later n) ==> dist n) (TSR a). Proof. destruct n; by constructor. Qed. - Global Instance TSR_stype_ne a n : + Global Instance TSR_proto_ne a n : Proper (pointwise_relation _ (dist n) ==> pointwise_relation _ (dist n) ==> dist n) (TSR a). Proof. - intros P1 P2 HP st1 st2 Hst. apply TSR_stype_contractive=> //. + intros P1 P2 HP prot1 prot2 Hst. apply TSR_proto_contractive=> //. destruct n as [|n]=> // v /=. by apply dist_S. Qed. - Global Instance TSR_stype_proper a : + Global Instance TSR_proto_proper a : Proper (pointwise_relation _ (≡) ==> pointwise_relation _ (≡) ==> (≡)) (TSR a). Proof. by constructor. Qed. - Global Instance dual_stype_ne : NonExpansive dual_stype. + Global Instance dual_proto_ne : NonExpansive dual_proto. Proof. - cofix IH=> n st1 st2 Hst. - rewrite -(stype_force_eq (dual_stype st1)) -(stype_force_eq (dual_stype st2)). + cofix IH=> n prot1 prot2 Hst. + rewrite -(proto_force_eq (dual_proto prot1)) -(proto_force_eq (dual_proto prot2)). destruct Hst; constructor=> v; auto; by apply IH. Qed. - Global Instance dual_stype_proper : Proper ((≡) ==> (≡)) dual_stype. + Global Instance dual_proto_proper : Proper ((≡) ==> (≡)) dual_proto. Proof. apply (ne_proper _). Qed. - Global Instance dual_stype_involutive : Involutive (≡) dual_stype. + Global Instance dual_proto_involutive : Involutive (≡) dual_proto. Proof. - cofix IH=> st. rewrite -(stype_force_eq (dual_stype (dual_stype _))). - destruct st as [|a P st]; first done. + cofix IH=> prot. rewrite -(proto_force_eq (dual_proto (dual_proto _))). + destruct prot as [|a P prot]; first done. rewrite /= involutive. constructor=> v; auto. Qed. - Lemma stype_equivI {M} st1 st2 : - st1 ≡ st2 ⊣⊢@{uPredI M} - match st1, st2 with + Lemma proto_equivI {M} prot1 prot2 : + prot1 ≡ prot2 ⊣⊢@{uPredI M} + match prot1, prot2 with | TEnd, TEnd => True - | TSR a1 P1 st1, TSR a2 P2 st2 => - ⌜ a1 = a2 ⌠∧ (∀ v, P1 v ≡ P2 v) ∧ â–· (∀ v, st1 v ≡ st2 v) + | TSR a1 P1 prot1, TSR a2 P2 prot2 => + ⌜ a1 = a2 ⌠∧ (∀ v, P1 v ≡ P2 v) ∧ â–· (∀ v, prot1 v ≡ prot2 v) | _, _ => False end. Proof. uPred.unseal; constructor=> n x ?. split; first by destruct 1. - destruct st1, st2=> //=; [constructor|]. + destruct prot1, prot2=> //=; [constructor|]. by intros [[= ->] [??]]; destruct n; constructor. Qed. - Lemma stype_later_equiv M st a P2 st2 : - â–· (st ≡ TSR a P2 st2) -∗ - â—‡ (∃ P1 st1, st ≡ TSR a P1 st1 ∗ + Lemma proto_later_equiv M prot a P2 prot2 : + â–· (prot ≡ TSR a P2 prot2) -∗ + â—‡ (∃ P1 prot1, prot ≡ TSR a P1 prot1 ∗ â–· (∀ v, P1 v ≡ P2 v) ∗ - â–· â–· (∀ v, st1 v ≡ st2 v) : uPred M). + â–· â–· (∀ v, prot1 v ≡ prot2 v) : uPred M). Proof. - iIntros "Heq". destruct st as [|a' P1 st1]. - - iDestruct (stype_equivI with "Heq") as ">[]". - - iDestruct (stype_equivI with "Heq") as "(>-> & HPeq & Hsteq)". - iExists P1, st1. auto. + iIntros "Heq". destruct prot as [|a' P1 prot1]. + - iDestruct (proto_equivI with "Heq") as ">[]". + - iDestruct (proto_equivI with "Heq") as "(>-> & HPeq & Hsteq)". + iExists P1, prot1. auto. Qed. - Lemma dual_stype_flip {M} st1 st2 : - dual_stype st1 ≡ st2 ⊣⊢@{uPredI M} st1 ≡ dual_stype st2. + Lemma dual_proto_flip {M} prot1 prot2 : + dual_proto prot1 ≡ prot2 ⊣⊢@{uPredI M} prot1 ≡ dual_proto prot2. Proof. iSplit. - - iIntros "Heq". iRewrite -"Heq". by rewrite dual_stype_involutive. - - iIntros "Heq". iRewrite "Heq". by rewrite dual_stype_involutive. + - iIntros "Heq". iRewrite -"Heq". by rewrite dual_proto_involutive. + - iIntros "Heq". iRewrite "Heq". by rewrite dual_proto_involutive. Qed. -End stype_ofe. +End proto_ofe. -Arguments stypeC : clear implicits. +Arguments protoC : clear implicits. -CoFixpoint stype_map {V A B} (f : A → B) (st : stype V A) : stype V B := - match st with +CoFixpoint proto_map {V A B} (f : A → B) (prot : proto V A) : proto V B := + match prot with | TEnd => TEnd - | TSR a P st => TSR a (λ v, f (P v)) (λ v, stype_map f (st v)) + | TSR a P prot => TSR a (λ v, f (P v)) (λ v, proto_map f (prot v)) end. -Lemma stype_map_ext_ne {V A} {B : ofeT} (f g : A → B) (st : stype V A) n : - (∀ x, f x ≡{n}≡ g x) → stype_map f st ≡{n}≡ stype_map g st. +Lemma proto_map_ext_ne {V A} {B : ofeT} (f g : A → B) (prot : proto V A) n : + (∀ x, f x ≡{n}≡ g x) → proto_map f prot ≡{n}≡ proto_map g prot. Proof. - revert n st. cofix IH=> n st Hf. - rewrite -(stype_force_eq (stype_map f st)) -(stype_force_eq (stype_map g st)). - destruct st as [|a P st], n as [|n]; constructor=> v //. apply IH; auto using dist_S. + revert n prot. cofix IH=> n prot Hf. + rewrite -(proto_force_eq (proto_map f prot)) -(proto_force_eq (proto_map g prot)). + destruct prot as [|a P prot], n as [|n]; constructor=> v //. apply IH; auto using dist_S. Qed. -Lemma stype_map_ext {V A} {B : ofeT} (f g : A → B) (st : stype V A) : - (∀ x, f x ≡ g x) → stype_map f st ≡ stype_map g st. +Lemma proto_map_ext {V A} {B : ofeT} (f g : A → B) (prot : proto V A) : + (∀ x, f x ≡ g x) → proto_map f prot ≡ proto_map g prot. Proof. - intros Hf. apply equiv_dist=> n. apply stype_map_ext_ne=> v. + intros Hf. apply equiv_dist=> n. apply proto_map_ext_ne=> v. apply equiv_dist, Hf. Qed. -Instance stype_map_ne {V : Type} {A B : ofeT} (f : A → B) n : +Instance proto_map_ne {V : Type} {A B : ofeT} (f : A → B) n : (∀ n, Proper (dist n ==> dist n) f) → - Proper (dist n ==> dist n) (@stype_map V _ _ f). + Proper (dist n ==> dist n) (@proto_map V _ _ f). Proof. - intros Hf. revert n. cofix IH=> n st1 st2 Hst. - rewrite -(stype_force_eq (stype_map _ st1)) -(stype_force_eq (stype_map _ st2)). + intros Hf. revert n. cofix IH=> n prot1 prot2 Hst. + rewrite -(proto_force_eq (proto_map _ prot1)) -(proto_force_eq (proto_map _ prot2)). destruct Hst; constructor=> v; apply Hf || apply IH; auto. Qed. -Lemma stype_fmap_id {V : Type} {A : ofeT} (st : stype V A) : - stype_map id st ≡ st. +Lemma proto_fmap_id {V : Type} {A : ofeT} (prot : proto V A) : + proto_map id prot ≡ prot. Proof. - revert st. cofix IH=> st. rewrite -(stype_force_eq (stype_map _ _)). - destruct st; constructor=> v; auto. + revert prot. cofix IH=> prot. rewrite -(proto_force_eq (proto_map _ _)). + destruct prot; constructor=> v; auto. Qed. -Lemma stype_fmap_compose {V : Type} {A B C : ofeT} (f : A → B) (g : B → C) st : - stype_map (g ∘ f) st ≡ stype_map g (@stype_map V _ _ f st). +Lemma proto_fmap_compose {V : Type} {A B C : ofeT} (f : A → B) (g : B → C) prot : + proto_map (g ∘ f) prot ≡ proto_map g (@proto_map V _ _ f prot). Proof. - revert st. cofix IH=> st. - rewrite -(stype_force_eq (stype_map _ _)) -(stype_force_eq (stype_map g _)). - destruct st; constructor=> v; auto. + revert prot. cofix IH=> prot. + rewrite -(proto_force_eq (proto_map _ _)) -(proto_force_eq (proto_map g _)). + destruct prot; constructor=> v; auto. Qed. -Definition stypeC_map {V A B} (f : A -n> B) : stypeC V A -n> stypeC V B := - CofeMor (stype_map f : stypeC V A → stypeC V B). -Instance stypeC_map_ne {V} A B : NonExpansive (@stypeC_map V A B). -Proof. intros n f g ? st. by apply stype_map_ext_ne. Qed. +Definition protoC_map {V A B} (f : A -n> B) : protoC V A -n> protoC V B := + CofeMor (proto_map f : protoC V A → protoC V B). +Instance protoC_map_ne {V} A B : NonExpansive (@protoC_map V A B). +Proof. intros n f g ? prot. by apply proto_map_ext_ne. Qed. -Program Definition stypeCF {V} (F : cFunctor) : cFunctor := {| - cFunctor_car A _ B _ := stypeC V (cFunctor_car F A _ B _); - cFunctor_map A1 _ A2 _ B1 _ B2 _ fg := stypeC_map (cFunctor_map F fg) +Program Definition protoCF {V} (F : cFunctor) : cFunctor := {| + cFunctor_car A _ B _ := protoC V (cFunctor_car F A _ B _); + cFunctor_map A1 _ A2 _ B1 _ B2 _ fg := protoC_map (cFunctor_map F fg) |}. Next Obligation. done. Qed. Next Obligation. by intros V F A1 ? A2 ? B1 ? B2 ? n f g Hfg; - apply stypeC_map_ne, cFunctor_ne. + apply protoC_map_ne, cFunctor_ne. Qed. Next Obligation. - intros V F A ? B ? x. rewrite /= -{2}(stype_fmap_id x). - apply stype_map_ext=>y. apply cFunctor_id. + intros V F A ? B ? x. rewrite /= -{2}(proto_fmap_id x). + apply proto_map_ext=>y. apply cFunctor_id. Qed. Next Obligation. intros V F A1 ? A2 ? A3 ? B1 ? B2 ? B3 ? f g f' g' x. - rewrite /= -stype_fmap_compose. - apply stype_map_ext=>y; apply cFunctor_compose. + rewrite /= -proto_fmap_compose. + apply proto_map_ext=>y; apply cFunctor_compose. Qed. -Instance stypeCF_contractive {V} F : - cFunctorContractive F → cFunctorContractive (@stypeCF V F). +Instance protoCF_contractive {V} F : + cFunctorContractive F → cFunctorContractive (@protoCF V F). Proof. by intros ? A1 ? A2 ? B1 ? B2 ? n f g Hfg; - apply stypeC_map_ne, cFunctor_contractive. + apply protoC_map_ne, cFunctor_contractive. Qed. Class IsDualAction (a1 a2 : action) := @@ -292,26 +292,26 @@ Proof. done. Qed. Instance is_dual_action_Receive : IsDualAction Receive Send. Proof. done. Qed. -Section DualStype. +Section DualProto. Context {V : Type} {A : ofeT}. - Class IsDualStype (st1 st2 : stype V A) := - is_dual_stype : dual_stype st1 ≡ st2. + Class IsDualProto (prot1 prot2 : proto V A) := + is_dual_proto : dual_proto prot1 ≡ prot2. - Global Instance is_dual_default (st : stype V A) : - IsDualStype st (dual_stype st) | 100. - Proof. by rewrite /IsDualStype. Qed. + Global Instance is_dual_default (prot : proto V A) : + IsDualProto prot (dual_proto prot) | 100. + Proof. by rewrite /IsDualProto. Qed. - Global Instance is_dual_end : IsDualStype (TEnd : stype V A) TEnd. - Proof. by rewrite /IsDualStype -(stype_force_eq (dual_stype _)). Qed. + Global Instance is_dual_end : IsDualProto (TEnd : proto V A) TEnd. + Proof. by rewrite /IsDualProto -(proto_force_eq (dual_proto _)). Qed. - Global Instance is_dual_tsr a1 a2 P (st1 st2 : V → stype V A) : + Global Instance is_dual_tsr a1 a2 P (prot1 prot2 : V → proto V A) : IsDualAction a1 a2 → - (∀ x, IsDualStype (st1 x) (st2 x)) → - IsDualStype (TSR a1 P st1) (TSR a2 P st2). + (∀ x, IsDualProto (prot1 x) (prot2 x)) → + IsDualProto (TSR a1 P prot1) (TSR a2 P prot2). Proof. - rewrite /IsDualAction /IsDualStype. intros <- Hst. - rewrite /IsDualStype -(stype_force_eq (dual_stype _)) /=. + rewrite /IsDualAction /IsDualProto. intros <- Hst. + rewrite /IsDualProto -(proto_force_eq (dual_proto _)) /=. by constructor=> v. Qed. -End DualStype. +End DualProto. diff --git a/theories/proto/proto_enc.v b/theories/proto/proto_enc.v index 05a775e..2989bb1 100644 --- a/theories/proto/proto_enc.v +++ b/theories/proto/proto_enc.v @@ -5,53 +5,53 @@ From iris.algebra Require Import list auth excl. From iris.base_logic Require Import invariants. From osiris.proto Require Export encodable proto_specs. -Section DualStypeEnc. +Section DualProtoEnc. Context `{EncDec V} `{PROP: bi} . Definition TSR' - (a : action) (P : V → PROP) (st : V → stype val PROP) : stype val PROP := + (a : action) (P : V → PROP) (prot : V → proto val PROP) : proto val PROP := TSR a (λ v, if decode v is Some x then P x else False)%I - (λ v, if decode v is Some x then st x else TEnd (* dummy *)). + (λ v, if decode v is Some x then prot x else TEnd (* dummy *)). Global Instance: Params (@TSR') 3. - Global Instance is_dual_tsr' a1 a2 P (st1 st2 : V → stype val PROP) : + Global Instance is_dual_tsr' a1 a2 P (st1 st2 : V → proto val PROP) : IsDualAction a1 a2 → - (∀ x, IsDualStype (st1 x) (st2 x)) → - IsDualStype (TSR' a1 P st1) (TSR' a2 P st2). + (∀ x, IsDualProto (st1 x) (st2 x)) → + IsDualProto (TSR' a1 P st1) (TSR' a2 P st2). Proof. - rewrite /IsDualAction /IsDualStype. intros <- Hst. - rewrite -(stype_force_eq (dual_stype _)). + rewrite /IsDualAction /IsDualProto. intros <- Hst. + rewrite -(proto_force_eq (dual_proto _)). constructor=> x. done. destruct (decode x)=> //. apply is_dual_end. Qed. -End DualStypeEnc. +End DualProtoEnc. -Notation "<!> x @ P , st" := - (TSR' Send (λ x, P%I) (λ x, st%stype)) - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<?> x @ P , st" := - (TSR' Receive (λ x, P%I) (λ x, st%stype)) - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<!> x , st" := (<!> x @ True, (st x))%stype - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<?> x , st" := (<?> x @ True, (st x))%stype - (at level 200, x pattern, st at level 200) : stype_scope. -Notation "<!> @ P , st" := (<!> dummy__ @ P dummy__, st dummy__)%stype - (at level 200, st at level 200) : stype_scope. -Notation "<?> @ P , st" := (<?> dummy__ @ P dummy__, st dummy__)%stype - (at level 200, st at level 200) : stype_scope. +Notation "<!> x @ P , prot" := + (TSR' Send (λ x, P%I) (λ x, prot%proto)) + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<?> x @ P , prot" := + (TSR' Receive (λ x, P%I) (λ x, prot%proto)) + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<!> x , prot" := (<!> x @ True, (prot x))%proto + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<?> x , prot" := (<?> x @ True, (prot x))%proto + (at level 200, x pattern, prot at level 200) : proto_scope. +Notation "<!> @ P , prot" := (<!> dummy__ @ P dummy__, prot dummy__)%proto + (at level 200, prot at level 200) : proto_scope. +Notation "<?> @ P , prot" := (<?> dummy__ @ P dummy__, prot dummy__)%proto + (at level 200, prot at level 200) : proto_scope. -Section stype_enc_specs. +Section proto_enc_specs. Context `{!heapG Σ} (N : namespace). Context `{!logrelG val Σ}. Lemma send_st_spec (A : Type) `{EncDec A} - st γ c s (P : A → iProp Σ) w : - {{{ P w ∗ ⟦ c @ s : <!> @ P, st ⟧{N,γ} }}} + prot γ c s (P : A → iProp Σ) w : + {{{ P w ∗ ⟦ c @ s : <!> @ P, prot ⟧{N,γ} }}} send c #s (encode w) - {{{ RET #(); ⟦ c @ s : st w ⟧{N,γ} }}}. + {{{ RET #(); ⟦ c @ s : prot w ⟧{N,γ} }}}. Proof. iIntros (Φ) "[HP Hsend] HΦ". iApply (send_st_spec with "[HP Hsend]"). @@ -64,10 +64,10 @@ Section stype_enc_specs. Qed. Lemma recv_st_spec (A : Type) `{EncDec A} - st γ c s (P : A → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P, st ⟧{N,γ} }}} + prot γ c s (P : A → iProp Σ) : + {{{ ⟦ c @ s : <?> @ P, prot ⟧{N,γ} }}} recv c #s - {{{ v, RET (encode v); ⟦ c @ s : st v ⟧{N,γ} ∗ P v }}}. + {{{ v, RET (encode v); ⟦ c @ s : prot v ⟧{N,γ} ∗ P v }}}. Proof. iIntros (Φ) "Hrecv HΦ". iApply (recv_st_spec with "Hrecv"). @@ -86,4 +86,4 @@ Section stype_enc_specs. - inversion Hw. Qed. -End stype_enc_specs. \ No newline at end of file +End proto_enc_specs. \ No newline at end of file diff --git a/theories/proto/proto_specs.v b/theories/proto/proto_specs.v index c6d1277..a0a3ea3 100644 --- a/theories/proto/proto_specs.v +++ b/theories/proto/proto_specs.v @@ -11,67 +11,67 @@ From osiris.proto Require Export channel. Class logrelG A Σ := { logrelG_channelG :> chanG Σ; - logrelG_authG :> auth_exclG (laterC (stypeC A (iPreProp Σ))) Σ; + logrelG_authG :> auth_exclG (laterC (protoC A (iPreProp Σ))) Σ; }. Definition logrelΣ A := #[ chanΣ ; GFunctor (authRF(optionURF (exclRF - (laterCF (@stypeCF A idCF))))) ]. + (laterCF (@protoCF A idCF))))) ]. Instance subG_chanΣ {A Σ} : subG (logrelΣ A) Σ → logrelG A Σ. Proof. intros [??%subG_auth_exclG]%subG_inv. constructor; apply _. Qed. -Fixpoint st_eval `{!logrelG val Σ} (vs : list val) (st1 st2 : stype val (iProp Σ)) : iProp Σ := +Fixpoint prot_eval `{!logrelG val Σ} (vs : list val) (prot1 prot2 : proto val (iProp Σ)) : iProp Σ := match vs with - | [] => st1 ≡ dual_stype st2 - | v::vs => match st2 with - | TSR Receive P st2 => P v ∗ â–· st_eval vs st1 (st2 v) + | [] => prot1 ≡ dual_proto prot2 + | v::vs => match prot2 with + | TSR Receive P prot2 => P v ∗ â–· prot_eval vs prot1 (prot2 v) | _ => False end end%I. -Arguments st_eval : simpl nomatch. +Arguments prot_eval : simpl nomatch. -Record st_name := STName { - st_c_name : chan_name; - st_l_name : gname; - st_r_name : gname +Record prot_name := ProtName { + prot_c_name : chan_name; + prot_l_name : gname; + prot_r_name : gname }. -Definition to_stype_auth_excl `{!logrelG val Σ} (st : stype val (iProp Σ)) := - to_auth_excl (Next (stype_map iProp_unfold st)). +Definition to_proto_auth_excl `{!logrelG val Σ} (prot : proto val (iProp Σ)) := + to_auth_excl (Next (proto_map iProp_unfold prot)). -Definition st_own `{!logrelG val Σ} (γ : st_name) (s : side) - (st : stype val (iProp Σ)) : iProp Σ := - own (side_elim s st_l_name st_r_name γ) (â—¯ to_stype_auth_excl st)%I. +Definition prot_own `{!logrelG val Σ} (γ : prot_name) (s : side) + (prot : proto val (iProp Σ)) : iProp Σ := + own (side_elim s prot_l_name prot_r_name γ) (â—¯ to_proto_auth_excl prot)%I. -Definition st_ctx `{!logrelG val Σ} (γ : st_name) (s : side) - (st : stype val (iProp Σ)) : iProp Σ := - own (side_elim s st_l_name st_r_name γ) (â— to_stype_auth_excl st)%I. +Definition prot_ctx `{!logrelG val Σ} (γ : prot_name) (s : side) + (prot : proto val (iProp Σ)) : iProp Σ := + own (side_elim s prot_l_name prot_r_name γ) (â— to_proto_auth_excl prot)%I. -Definition inv_st `{!logrelG val Σ} (γ : st_name) (c : val) : iProp Σ := - (∃ l r stl str, - chan_own (st_c_name γ) Left l ∗ - chan_own (st_c_name γ) Right r ∗ - st_ctx γ Left stl ∗ - st_ctx γ Right str ∗ - â–· ((⌜r = []⌠∗ st_eval l stl str) ∨ - (⌜l = []⌠∗ st_eval r str stl)))%I. +Definition inv_prot `{!logrelG val Σ} (γ : prot_name) (c : val) : iProp Σ := + (∃ l r protl protr, + chan_own (prot_c_name γ) Left l ∗ + chan_own (prot_c_name γ) Right r ∗ + prot_ctx γ Left protl ∗ + prot_ctx γ Right protr ∗ + â–· ((⌜r = []⌠∗ prot_eval l protl protr) ∨ + (⌜l = []⌠∗ prot_eval r protr protl)))%I. -Definition interp_st `{!logrelG val Σ, !heapG Σ} (N : namespace) (γ : st_name) - (c : val) (s : side) (st : stype val (iProp Σ)) : iProp Σ := - (st_own γ s st ∗ is_chan N (st_c_name γ) c ∗ inv N (inv_st γ c))%I. -Instance: Params (@interp_st) 7. +Definition interp_prot `{!logrelG val Σ, !heapG Σ} (N : namespace) (γ : prot_name) + (c : val) (s : side) (prot : proto val (iProp Σ)) : iProp Σ := + (prot_own γ s prot ∗ is_chan N (prot_c_name γ) c ∗ inv N (inv_prot γ c))%I. +Instance: Params (@interp_prot) 7. -Notation "⟦ c @ s : st ⟧{ N , γ }" := (interp_st N γ c s st) - (at level 10, s at next level, st at next level, γ at next level, - format "⟦ c @ s : st ⟧{ N , γ }"). +Notation "⟦ c @ s : prot ⟧{ N , γ }" := (interp_prot N γ c s prot) + (at level 10, s at next level, prot at next level, γ at next level, + format "⟦ c @ s : prot ⟧{ N , γ }"). -Section stype. +Section proto. Context `{!logrelG val Σ, !heapG Σ} (N : namespace). - Global Instance st_eval_ne : NonExpansive2 (st_eval vs). + Global Instance prot_eval_ne : NonExpansive2 (prot_eval vs). Proof. induction vs as [|v vs IH]; - destruct 2 as [n|[] P1 P2 st1 st2|n [] P1 P2 st1 st2]=> //=. + destruct 2 as [n|[] P1 P2 prot1 prot2|n [] P1 P2 prot1 prot2]=> //=. - by repeat f_equiv. - f_equiv. done. f_equiv. by constructor. - f_equiv. done. f_equiv. by constructor. @@ -80,139 +80,139 @@ Section stype. - f_equiv. done. by f_contractive. - f_equiv. done. f_contractive. apply IH. by apply dist_S. done. Qed. - Global Instance st_eval_proper vs : Proper ((≡) ==> (≡) ==> (≡)) (st_eval vs). + Global Instance prot_eval_proper vs : Proper ((≡) ==> (≡) ==> (≡)) (prot_eval vs). Proof. apply (ne_proper_2 _). Qed. - Global Instance to_stype_auth_excl_ne : NonExpansive to_stype_auth_excl. + Global Instance to_proto_auth_excl_ne : NonExpansive to_proto_auth_excl. Proof. solve_proper. Qed. - Global Instance st_own_ne γ s : NonExpansive (st_own γ s). + Global Instance prot_own_ne γ s : NonExpansive (prot_own γ s). Proof. solve_proper. Qed. - Global Instance interp_st_ne γ c s : NonExpansive (interp_st N γ c s). + Global Instance interp_st_ne γ c s : NonExpansive (interp_prot N γ c s). Proof. solve_proper. Qed. - Global Instance interp_st_proper γ c s : Proper ((≡) ==> (≡)) (interp_st N γ c s). + Global Instance interp_st_proper γ c s : Proper ((≡) ==> (≡)) (interp_prot N γ c s). Proof. apply (ne_proper _). Qed. - Lemma st_excl_eq γ s st st' : - st_ctx γ s st -∗ st_own γ s st' -∗ â–· (st ≡ st'). + Lemma prot_excl_eq γ s prot prot' : + prot_ctx γ s prot -∗ prot_own γ s prot' -∗ â–· (prot ≡ prot'). Proof. iIntros "Hauth Hfrag". iDestruct (own_valid_2 with "Hauth Hfrag") as "Hvalid". iDestruct (to_auth_excl_valid with "Hvalid") as "Hvalid". iDestruct (bi.later_eq_1 with "Hvalid") as "Hvalid"; iNext. - assert (∀ st : stype val (iProp Σ), - stype_map iProp_fold (stype_map iProp_unfold st) ≡ st) as help. - { intros st''. rewrite -stype_fmap_compose -{2}(stype_fmap_id st''). - apply stype_map_ext=> P. by rewrite /= iProp_fold_unfold. } - rewrite -{2}(help st). iRewrite "Hvalid". by rewrite help. + assert (∀ prot : proto val (iProp Σ), + proto_map iProp_fold (proto_map iProp_unfold prot) ≡ prot) as help. + { intros prot''. rewrite -proto_fmap_compose -{2}(proto_fmap_id prot''). + apply proto_map_ext=> P. by rewrite /= iProp_fold_unfold. } + rewrite -{2}(help prot). iRewrite "Hvalid". by rewrite help. Qed. - Lemma st_excl_update γ s st st' st'' : - st_ctx γ s st -∗ st_own γ s st' ==∗ st_ctx γ s st'' ∗ st_own γ s st''. + Lemma prot_excl_update γ s prot prot' prot'' : + prot_ctx γ s prot -∗ prot_own γ s prot' ==∗ prot_ctx γ s prot'' ∗ prot_own γ s prot''. Proof. iIntros "Hauth Hfrag". iDestruct (own_update_2 with "Hauth Hfrag") as "H". - { eapply (auth_update _ _ (to_stype_auth_excl st'') - (to_stype_auth_excl st'')). + { eapply (auth_update _ _ (to_proto_auth_excl prot'') + (to_proto_auth_excl prot'')). eapply option_local_update. eapply exclusive_local_update. done. } by rewrite own_op. Qed. - Lemma st_eval_send (P : val →iProp Σ) st vs v str : - P v -∗ st_eval vs (<!> @ P, st) str -∗ st_eval (vs ++ [v]) (st v) str. + Lemma prot_eval_send (P : val →iProp Σ) prot vs v protr : + P v -∗ prot_eval vs (<!> @ P, prot) protr -∗ prot_eval (vs ++ [v]) (prot v) protr. Proof. iIntros "HP". - iRevert (str). - iInduction vs as [|v' vs] "IH"; iIntros (str) "Heval". - - iDestruct (dual_stype_flip with "Heval") as "Heval". + iRevert (protr). + iInduction vs as [|v' vs] "IH"; iIntros (protr) "Heval". + - iDestruct (dual_proto_flip with "Heval") as "Heval". iRewrite -"Heval"; simpl. - rewrite dual_stype_involutive. + rewrite dual_proto_involutive. by iFrame. - - destruct str as [|[] P' str]=> //=. + - destruct protr as [|[] P' protr]=> //=. iDestruct "Heval" as "[$ Heval]". by iApply ("IH" with "HP"). Qed. - Lemma st_eval_recv (P : val → iProp Σ) st1 l st2 v : - st_eval (v :: l) st1 (<?> @ P, st2) -∗ â–· st_eval l st1 (st2 v) ∗ P v. + Lemma prot_eval_recv (P : val → iProp Σ) prot1 l prot2 v : + prot_eval (v :: l) prot1 (<?> @ P, prot2) -∗ â–· prot_eval l prot1 (prot2 v) ∗ P v. Proof. iDestruct 1 as "[HP Heval]". iFrame. Qed. - Lemma new_chan_vs st E c cγ : + Lemma new_chan_vs prot E c cγ : is_chan N cγ c ∗ chan_own cγ Left [] ∗ chan_own cγ Right [] ={E}=∗ ∃ lγ rγ, - let γ := STName cγ lγ rγ in - ⟦ c @ Left : st ⟧{N,γ} ∗ ⟦ c @ Right : dual_stype st ⟧{N,γ}. + let γ := ProtName cγ lγ rγ in + ⟦ c @ Left : prot ⟧{N,γ} ∗ ⟦ c @ Right : dual_proto prot ⟧{N,γ}. Proof. iIntros "[#Hcctx [Hcol Hcor]]". - iMod (own_alloc (â— (to_stype_auth_excl st) â‹… - â—¯ (to_stype_auth_excl st))) as (lγ) "[Hlsta Hlstf]". + iMod (own_alloc (â— (to_proto_auth_excl prot) â‹… + â—¯ (to_proto_auth_excl prot))) as (lγ) "[Hlsta Hlstf]". { by apply auth_both_valid_2. } - iMod (own_alloc (â— (to_stype_auth_excl (dual_stype st)) â‹… - â—¯ (to_stype_auth_excl (dual_stype st)))) as (rγ) "[Hrsta Hrstf]". + iMod (own_alloc (â— (to_proto_auth_excl (dual_proto prot)) â‹… + â—¯ (to_proto_auth_excl (dual_proto prot)))) as (rγ) "[Hrsta Hrstf]". { by apply auth_both_valid_2. } - pose (STName cγ lγ rγ) as stγ. - iMod (inv_alloc N _ (inv_st stγ c) with "[-Hlstf Hrstf Hcctx]") as "#Hinv". - { iNext. rewrite /inv_st. eauto 10 with iFrame. } + pose (ProtName cγ lγ rγ) as protγ. + iMod (inv_alloc N _ (inv_prot protγ c) with "[-Hlstf Hrstf Hcctx]") as "#Hinv". + { iNext. rewrite /inv_prot. eauto 10 with iFrame. } iModIntro. iExists _, _. iFrame "Hlstf Hrstf Hcctx Hinv". Qed. - Lemma new_chan_st_spec st1 st2 : - IsDualStype st1 st2 → + Lemma new_chan_st_spec prot1 prot2 : + IsDualProto prot1 prot2 → {{{ True }}} new_chan #() - {{{ c γ, RET c; ⟦ c @ Left : st1 ⟧{N,γ} ∗ ⟦ c @ Right : st2 ⟧{N,γ} }}}. + {{{ c γ, RET c; ⟦ c @ Left : prot1 ⟧{N,γ} ∗ ⟦ c @ Right : prot2 ⟧{N,γ} }}}. Proof. - rewrite /IsDualStype. - iIntros (Hst Φ _) "HΦ". + rewrite /IsDualProto. + iIntros (Hprot Φ _) "HΦ". iApply (wp_fupd). iApply (new_chan_spec)=> //. iModIntro. iIntros (c γ) "[Hc Hctx]". - iMod (new_chan_vs st1 ⊤ c γ with "[-HΦ]") as "H". + iMod (new_chan_vs prot1 ⊤ c γ with "[-HΦ]") as "H". { rewrite /is_chan. eauto with iFrame. } iDestruct "H" as (lγ rγ) "[Hl Hr]". iApply "HΦ". - rewrite Hst. + rewrite Hprot. by iFrame. Qed. - Lemma send_vs c γ s (P : val → iProp Σ) st E : + Lemma send_vs c γ s (P : val → iProp Σ) prot E : ↑N ⊆ E → - ⟦ c @ s : TSR Send P st ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, - chan_own (st_c_name γ) s vs ∗ + ⟦ c @ s : TSR Send P prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, + chan_own (prot_c_name γ) s vs ∗ â–· ∀ v, P v -∗ - chan_own (st_c_name γ) s (vs ++ [v]) ={E∖↑N,E}=∗ - ⟦ c @ s : st v ⟧{N,γ}. + chan_own (prot_c_name γ) s (vs ++ [v]) ={E∖↑N,E}=∗ + ⟦ c @ s : prot v ⟧{N,γ}. Proof. iIntros (Hin) "[Hstf #[Hcctx Hinv]]". - iInv N as (l r stl str) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose". + iInv N as (l r protl protr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose". iModIntro. destruct s. - iExists _. iIntros "{$Hclf} !>" (v) "HP Hclf". iRename "Hstf" into "Hstlf". - iDestruct (st_excl_eq with "Hstla Hstlf") as "#Heq". - iMod (st_excl_update _ _ _ _ (st v) with "Hstla Hstlf") as "[Hstla Hstlf]". + iDestruct (prot_excl_eq with "Hstla Hstlf") as "#Heq". + iMod (prot_excl_update _ _ _ _ (prot v) with "Hstla Hstlf") as "[Hstla Hstlf]". iMod ("Hclose" with "[-Hstlf]") as "_". { iNext. iExists _,_,_,_. iFrame. iLeft. iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]". - iSplit=> //. - iApply (st_eval_send with "HP"). + iApply (prot_eval_send with "HP"). by iRewrite "Heq" in "Heval". - iRewrite "Heq" in "Heval". destruct r as [|vr r]=> //=. iSplit; first done. - iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_stype_involutive. } + iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_proto_involutive. } iModIntro. iFrame. auto. - iExists _. iIntros "{$Hcrf} !>" (v) "HP Hcrf". iRename "Hstf" into "Hstrf". - iDestruct (st_excl_eq with "Hstra Hstrf") as "#Heq". - iMod (st_excl_update _ _ _ _ (st v) with "Hstra Hstrf") as "[Hstra Hstrf]". + iDestruct (prot_excl_eq with "Hstra Hstrf") as "#Heq". + iMod (prot_excl_update _ _ _ _ (prot v) with "Hstra Hstrf") as "[Hstra Hstrf]". iMod ("Hclose" with "[-Hstrf]") as "_". { iNext. iExists _, _, _, _. iFrame. @@ -220,17 +220,17 @@ Section stype. iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]". - iRewrite "Heq" in "Heval". destruct l as [|vl l]=> //. iSplit; first done. simpl. - iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_stype_involutive. + iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_proto_involutive. - iSplit=> //. - iApply (st_eval_send with "HP"). + iApply (prot_eval_send with "HP"). by iRewrite "Heq" in "Heval". } iModIntro. iFrame. auto. Qed. - Lemma send_st_spec st γ c s (P : val → iProp Σ) v : - {{{ P v ∗ ⟦ c @ s : <!> @ P , st ⟧{N,γ} }}} + Lemma send_st_spec prot γ c s (P : val → iProp Σ) v : + {{{ P v ∗ ⟦ c @ s : <!> @ P , prot ⟧{N,γ} }}} send c #s v - {{{ RET #(); ⟦ c @ s : st v ⟧{N,γ} }}}. + {{{ RET #(); ⟦ c @ s : prot v ⟧{N,γ} }}}. Proof. iIntros (Φ) "[HP Hsend] HΦ". iApply (send_spec with "[#]"). @@ -241,25 +241,25 @@ Section stype. iApply ("H" $! v with "HP"). by destruct s. Qed. - Lemma try_recv_vs c γ s (P : val → iProp Σ) st E : + Lemma try_recv_vs c γ s (P : val → iProp Σ) prot E : ↑N ⊆ E → - ⟦ c @ s : TSR Receive P st ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, - chan_own (st_c_name γ) (dual_side s) vs ∗ + ⟦ c @ s : TSR Receive P prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, + chan_own (prot_c_name γ) (dual_side s) vs ∗ â–· ((⌜vs = []⌠-∗ - chan_own (st_c_name γ) (dual_side s) vs ={E∖↑N,E}=∗ - ⟦ c @ s : TSR Receive P st ⟧{N,γ}) ∧ + chan_own (prot_c_name γ) (dual_side s) vs ={E∖↑N,E}=∗ + ⟦ c @ s : TSR Receive P prot ⟧{N,γ}) ∧ (∀ v vs', ⌜vs = v :: vs'⌠-∗ - chan_own (st_c_name γ) (dual_side s) vs' ={E∖↑N,E}=∗ - ⟦ c @ s : (st v) ⟧{N,γ} ∗ â–· P v)). + chan_own (prot_c_name γ) (dual_side s) vs' ={E∖↑N,E}=∗ + ⟦ c @ s : (prot v) ⟧{N,γ} ∗ â–· P v)). Proof. iIntros (Hin) "[Hstf #[Hcctx Hinv]]". - iInv N as (l r stl str) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose". + iInv N as (l r protl protr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose". iExists (side_elim s r l). iModIntro. destruct s; simpl. - iIntros "{$Hcrf} !>". iRename "Hstf" into "Hstlf". - iDestruct (st_excl_eq with "Hstla Hstlf") as "#Heq". + iDestruct (prot_excl_eq with "Hstla Hstlf") as "#Heq". iSplit. + iIntros (->) "Hown". iMod ("Hclose" with "[-Hstlf]") as "_". @@ -267,11 +267,11 @@ Section stype. iModIntro. iFrame "Hcctx ∗ Hinv". + iIntros (v vs ->) "Hown". iDestruct "Hinv'" as "[[>% _]|[> -> Heval]]"; first done. - iMod (st_excl_update _ _ _ _ (st v) with "Hstla Hstlf") as "[Hstla Hstlf]". - iDestruct (stype_later_equiv with "Heq") as ">Hleq". - iDestruct "Hleq" as (P1 st1) "(Hsteq & HPeq & Hsteq')". + iMod (prot_excl_update _ _ _ _ (prot v) with "Hstla Hstlf") as "[Hstla Hstlf]". + iDestruct (proto_later_equiv with "Heq") as ">Hleq". + iDestruct "Hleq" as (P1 prot1) "(Hsteq & HPeq & Hsteq')". iRewrite "Hsteq" in "Heval". - iDestruct (st_eval_recv with "Heval") as "[Heval HP]". + iDestruct (prot_eval_recv with "Heval") as "[Heval HP]". iMod ("Hclose" with "[-Hstlf HP]") as "H". { iExists _, _,_ ,_. iFrame. iRight. iNext. iSplit=> //. iNext. by iRewrite -("Hsteq'" $! v). } @@ -279,7 +279,7 @@ Section stype. iNext. by iRewrite -("HPeq" $! v). - iIntros "{$Hclf} !>". iRename "Hstf" into "Hstrf". - iDestruct (st_excl_eq with "Hstra Hstrf") as "#Heq". + iDestruct (prot_excl_eq with "Hstra Hstrf") as "#Heq". iSplit=> //. + iIntros (->) "Hown". iMod ("Hclose" with "[-Hstrf]") as "_". @@ -287,11 +287,11 @@ Section stype. iModIntro. iFrame "Hcctx ∗ Hinv". + iIntros (v vs' ->) "Hown". iDestruct "Hinv'" as "[[>-> Heval]|[>% Heval]]"; last done. - iMod (st_excl_update _ _ _ _ (st v) with "Hstra Hstrf") as "[Hstra Hstrf]". - iDestruct (stype_later_equiv with "Heq") as ">Hleq". - iDestruct "Hleq" as (P1 st1) "(Hsteq & HPeq & Hsteq')". + iMod (prot_excl_update _ _ _ _ (prot v) with "Hstra Hstrf") as "[Hstra Hstrf]". + iDestruct (proto_later_equiv with "Heq") as ">Hleq". + iDestruct "Hleq" as (P1 prot1) "(Hsteq & HPeq & Hsteq')". iRewrite "Hsteq" in "Heval". - iDestruct (st_eval_recv with "Heval") as "[Heval HP]". + iDestruct (prot_eval_recv with "Heval") as "[Heval HP]". iMod ("Hclose" with "[-Hstrf HP]") as "_". { iExists _, _, _, _. iFrame. iLeft. iNext. iSplit=> //. iNext. by iRewrite -("Hsteq'" $! v). } @@ -299,11 +299,11 @@ Section stype. iNext. by iRewrite -("HPeq" $! v). Qed. - Lemma try_recv_st_spec st γ c s (P : val → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P , st ⟧{N,γ} }}} + Lemma try_recv_st_spec prot γ c s (P : val → iProp Σ) : + {{{ ⟦ c @ s : <?> @ P , prot ⟧{N,γ} }}} try_recv c #s - {{{ v, RET v; (⌜v = NONEV⌠∧ ⟦ c @ s : <?> @ P, st ⟧{N,γ}) ∨ - (∃ w, ⌜v = SOMEV w⌠∧ ⟦ c @ s : st w ⟧{N,γ} ∗ â–· P w)}}}. + {{{ v, RET v; (⌜v = NONEV⌠∧ ⟦ c @ s : <?> @ P, prot ⟧{N,γ}) ∨ + (∃ w, ⌜v = SOMEV w⌠∧ ⟦ c @ s : prot w ⟧{N,γ} ∗ â–· P w)}}}. Proof. iIntros (Φ) "Hrecv HΦ". iApply (try_recv_spec with "[#]"). @@ -325,10 +325,10 @@ Section stype. iApply "HΦ"; eauto with iFrame. Qed. - Lemma recv_st_spec st γ c s (P : val → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P , st ⟧{N,γ} }}} + Lemma recv_st_spec prot γ c s (P : val → iProp Σ) : + {{{ ⟦ c @ s : <?> @ P , prot ⟧{N,γ} }}} recv c #s - {{{ v, RET v; ⟦ c @ s : st v ⟧{N,γ} ∗ P v }}}. + {{{ v, RET v; ⟦ c @ s : prot v ⟧{N,γ} ∗ P v }}}. Proof. iIntros (Φ) "Hrecv HΦ". iLöb as "IH". wp_rec. @@ -339,4 +339,4 @@ Section stype. - iDestruct "H" as (w ->) "[H HP]". wp_pures. iApply "HΦ". iFrame. Qed. -End stype. +End proto. -- GitLab