diff --git a/theories/examples/map_swap.v b/theories/examples/map_swap.v
deleted file mode 100644
index 6788ba7684ca7d5cab4d676e4d22ba3c61547003..0000000000000000000000000000000000000000
--- a/theories/examples/map_swap.v
+++ /dev/null
@@ -1,57 +0,0 @@
-(** This file implements a distributed mapper service, a specification thereof,
-and its proofs. *)
-From actris.channel Require Import proofmode.
-From iris.heap_lang Require Import lib.spin_lock.
-From actris.utils Require Import llist contribution.
-From iris.algebra Require Import gmultiset.
-
-(** * Correctness proofs of the distributed version *)
-Class mapG Σ A `{Countable A} := {
-  map_contributionG :> contributionG Σ (gmultisetUR A);
-  map_lockG :> lockG Σ;
-}.
-
-Section map.
-  Context `{Countable A} {B : Type}.
-  Context `{!heapG Σ, !chanG Σ, !mapG Σ A}.
-  Context (IA : A → val → iProp Σ) (IB : B → val → iProp Σ) (map : A → list B).
-  Local Open Scope nat_scope.
-  Implicit Types n : nat.
-
-  Definition map_spec (vmap : val) : iProp Σ := (∀ x v,
-    {{{ IA x v }}} vmap v {{{ l, RET #l; llist IB l (map x) }}})%I.
-
-  Definition map_protocol_recv_aux (rec : gmultiset A -d> iProto Σ) :
-    gmultiset A -d> iProto Σ :=
-    λ X,
-    (if decide (X ≠ ∅) then END else
-      <! x (l : loc)> MSG #l {{ ⌜ x ∈ X ⌝ ∗ llist IB l (map x) }};
-    rec (X ∖ {[ x ]}))%proto.
-  Instance map_protocol_recv_aux_contractive : Contractive map_protocol_recv_aux.
-  Proof. solve_proper_prepare. f_equiv. solve_proto_contractive. Qed.
-  Definition map_protocol_recv := fixpoint map_protocol_recv_aux.
-  Global Instance map_protocol_recv_unfold X :
-    ProtoUnfold (map_protocol_recv X) (map_protocol_recv_aux map_protocol_recv X).
-  Proof. apply proto_unfold_eq, (fixpoint_unfold map_protocol_recv_aux). Qed.
-
-  Definition map_protocol_aux (rec : nat -d> gmultiset A -d> iProto Σ) :
-      nat -d> gmultiset A -d> iProto Σ := λ n X,
-    let rec : nat → gmultiset A → iProto Σ := rec in
-    (if n is 0 then map_protocol_recv X else
-     ((<?x v> MSG v {{ IA x v }}; rec n (X ⊎ {[ x ]}))
-        <&>
-      rec (pred n) X))%proto.
-
-  Instance map_protocol_aux_contractive : Contractive map_protocol_aux.
-  Proof. solve_proper_prepare. f_equiv. solve_proto_contractive. Qed.
-  Definition map_protocol := fixpoint map_protocol_aux.
-  Global Instance map_protocol_unfold n X :
-    ProtoUnfold (map_protocol n X) (map_protocol_aux map_protocol n X).
-  Proof. apply proto_unfold_eq, (fixpoint_unfold map_protocol_aux). Qed.
-
-  Lemma sub_proof n x X :
-    ⊢ (map_protocol n ({[ x ]} ⊎ X) ⊑
-       <? (l : loc)> MSG #l {{ llist IB l (map x) }} ; map_protocol n X)%proto.
-  Proof. Admitted.
-
-End map.