From 19acb9ad8efae506a1e9a67e40396bf2e92a69ec Mon Sep 17 00:00:00 2001 From: Robbert Krebbers <mail@robbertkrebbers.nl> Date: Mon, 17 Jun 2019 16:05:57 +0200 Subject: [PATCH] =?UTF-8?q?More=20renaming,=20use=20=CE=A6=20for=20predica?= =?UTF-8?q?tes=20as=20we=20do=20in=20Iris.?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- theories/proto/proto_def.v | 88 ++++++++++++++++++------------------ theories/proto/proto_enc.v | 38 ++++++++-------- theories/proto/proto_specs.v | 82 ++++++++++++++++----------------- 3 files changed, 103 insertions(+), 105 deletions(-) diff --git a/theories/proto/proto_def.v b/theories/proto/proto_def.v index a494aa4..06221e2 100644 --- a/theories/proto/proto_def.v +++ b/theories/proto/proto_def.v @@ -22,7 +22,7 @@ Instance proto_inhabited V PROP : Inhabited (proto V PROP) := populate TEnd. CoFixpoint dual_proto {V PROP} (prot : proto V PROP) : proto V PROP := match prot with | TEnd => TEnd - | TSR a P prot => TSR (dual_action a) P (λ v, dual_proto (prot v)) + | TSR a Φ prot => TSR (dual_action a) Φ (λ v, dual_proto (prot v)) end. Instance: Params (@dual_proto) 2. @@ -39,9 +39,9 @@ Notation "<!> x , prot" := (<!> x @ True, prot%proto)%proto (at level 200, x pattern, prot at level 200) : proto_scope. Notation "<?> x , prot" := (<?> x @ True, prot%proto)%proto (at level 200, x pattern, prot at level 200) : proto_scope. -Notation "<!> @ P , prot" := (<!> x @ P x, prot x)%proto +Notation "<!> @ Φ , prot" := (TSR Send Φ prot)%proto (at level 200, prot at level 200) : proto_scope. -Notation "<?> @ P , prot" := (<?> x @ P x, prot x)%proto +Notation "<?> @ Φ , prot" := (TSR Receive Φ prot)%proto (at level 200, prot at level 200) : proto_scope. Section proto_ofe. @@ -50,52 +50,52 @@ Section proto_ofe. CoInductive proto_equiv : Equiv (proto V PROP) := | TEnd_equiv : TEnd ≡ TEnd - | TSR_equiv a P1 P2 prot1 prot2 : - pointwise_relation V (≡) P1 P2 → + | TSR_equiv a Φ1 Φ2 prot1 prot2 : + pointwise_relation V (≡) Φ1 Φ2 → pointwise_relation V (≡) prot1 prot2 → - TSR a P1 prot1 ≡ TSR a P2 prot2. + TSR a Φ1 prot1 ≡ TSR a Φ2 prot2. Existing Instance proto_equiv. CoInductive proto_dist : Dist (proto V PROP) := | TEnd_dist n : TEnd ≡{n}≡ TEnd - | TSR_dist_0 a P1 P2 prot1 prot2 : - pointwise_relation V (dist 0) P1 P2 → - TSR a P1 prot1 ≡{0}≡ TSR a P2 prot2 - | TSR_dist_S n a P1 P2 prot1 prot2 : - pointwise_relation V (dist (S n)) P1 P2 → + | TSR_dist_0 a Φ1 Φ2 prot1 prot2 : + pointwise_relation V (dist 0) Φ1 Φ2 → + TSR a Φ1 prot1 ≡{0}≡ TSR a Φ2 prot2 + | TSR_dist_S n a Φ1 Φ2 prot1 prot2 : + pointwise_relation V (dist (S n)) Φ1 Φ2 → pointwise_relation V (dist n) prot1 prot2 → - TSR a P1 prot1 ≡{S n}≡ TSR a P2 prot2. + TSR a Φ1 prot1 ≡{S n}≡ TSR a Φ2 prot2. Existing Instance proto_dist. - Lemma TSR_dist n a P1 P2 prot1 prot2 : - pointwise_relation V (dist n) P1 P2 → + Lemma TSR_dist n a Φ1 Φ2 prot1 prot2 : + pointwise_relation V (dist n) Φ1 Φ2 → pointwise_relation V (dist_later n) prot1 prot2 → - TSR a P1 prot1 ≡{n}≡ TSR a P2 prot2. + TSR a Φ1 prot1 ≡{n}≡ TSR a Φ2 prot2. Proof. destruct n; by constructor. Defined. Definition proto_ofe_mixin : OfeMixin (proto V PROP). Proof. split. - intros prot1 prot2. split. - + revert prot1 prot2. cofix IH; destruct 1 as [|a P1 P2 prot1' prot2' HP]=> n. + + revert prot1 prot2. cofix IH; destruct 1 as [|a Φ1 Φ2 prot1' prot2' HΦ]=> n. { constructor. } destruct n as [|n]. - * constructor=> v. apply equiv_dist, HP. - * constructor=> v. apply equiv_dist, HP. by apply IH. - + revert prot1 prot2. cofix IH=> -[|a1 P1 prot1] -[|a2 P2 prot2] Hprot; + * constructor=> v. apply equiv_dist, HΦ. + * constructor=> v. apply equiv_dist, HΦ. by apply IH. + + revert prot1 prot2. cofix IH=> -[|a1 Φ1 prot1] -[|a2 Φ2 prot2] Hprot; feed inversion (Hprot O); subst; constructor=> v. * apply equiv_dist=> n. feed inversion (Hprot n); auto. * apply IH=> n. feed inversion (Hprot (S n)); auto. - intros n. split. - + revert n. cofix IH=> -[|n] [|a P prot]; constructor=> v; auto. + + revert n. cofix IH=> -[|n] [|a Φ prot]; constructor=> v; auto. + revert n. cofix IH; destruct 1; constructor=> v; symmetry; auto. + revert n. cofix IH; destruct 1; inversion 1; constructor=> v; etrans; eauto. - cofix IH=> -[|n]; inversion 1; constructor=> v; try apply dist_S; auto. Qed. Canonical Structure protoC : ofeT := OfeT (proto V PROP) proto_ofe_mixin. - Definition proto_head (d : V -c> PROP) (prot : proto V PROP) : V -c> PROP := - match prot with TEnd => d | TSR a P prot => P end. + Definition proto_head (dΦ : V -c> PROP) (prot : proto V PROP) : V -c> PROP := + match prot with TEnd => dΦ | TSR a Φ prot => Φ end. Definition proto_tail (v : V) (prot : protoC) : later protoC := match prot with TEnd => Next TEnd | TSR a P prot => Next (prot v) end. Global Instance proto_head_ne d : NonExpansive (proto_head d). @@ -106,7 +106,7 @@ Section proto_ofe. Definition proto_force (prot : proto V PROP) : proto V PROP := match prot with | TEnd => TEnd - | TSR a P prot => TSR a P prot + | TSR a Φ prot => TSR a Φ prot end. Lemma proto_force_eq prot : proto_force prot = prot. Proof. by destruct prot. Defined. @@ -114,8 +114,8 @@ Section proto_ofe. CoFixpoint proto_compl_go `{!Cofe PROP} (c : chain protoC) : protoC := match c O with | TEnd => TEnd - | TSR a P prot => TSR a - (compl (chain_map (proto_head P) c) : V → PROP) + | TSR a Φ prot => TSR a + (compl (chain_map (proto_head Φ) c) : V → PROP) (λ v, proto_compl_go (later_chain (chain_map (proto_tail v) c))) end. @@ -124,16 +124,16 @@ Section proto_ofe. Next Obligation. intros ? n c; rewrite /compl. revert c n. cofix IH=> c n. rewrite -(proto_force_eq (proto_compl_go c)) /=. - destruct (c O) as [|a P prot'] eqn:Hc0. + destruct (c O) as [|a Φ prot'] eqn:Hc0. - assert (c n ≡{0}≡ TEnd) as Hcn. { rewrite -Hc0 -(chain_cauchy c 0 n) //. lia. } by inversion Hcn. - - assert (c n ≡{0}≡ TSR a P prot') as Hcn. + - assert (c n ≡{0}≡ TSR a Φ prot') as Hcn. { rewrite -Hc0 -(chain_cauchy c 0 n) //. lia. } - inversion Hcn as [|? P' ? prot'' ? HP|]; subst. + inversion Hcn as [|? P' ? prot'' ? HΦ|]; subst. destruct n as [|n]; constructor. - + intros v. by rewrite (conv_compl 0 (chain_map (proto_head P) c) v) /= -H. - + intros v. by rewrite (conv_compl _ (chain_map (proto_head P) c) v) /= -H. + + intros v. by rewrite (conv_compl 0 (chain_map (proto_head Φ) c) v) /= -H. + + intros v. by rewrite (conv_compl _ (chain_map (proto_head Φ) c) v) /= -H. + intros v. assert (prot'' v = later_car (proto_tail v (c (S n)))) as ->. { by rewrite -H /=. } apply IH. @@ -147,7 +147,7 @@ Section proto_ofe. Proper (pointwise_relation _ (dist n) ==> pointwise_relation _ (dist n) ==> dist n) (TSR a). Proof. - intros P1 P2 HP prot1 prot2 Hst. apply TSR_proto_contractive=> //. + intros Φ1 Φ2 HΦ prot1 prot2 Hst. apply TSR_proto_contractive=> //. destruct n as [|n]=> // v /=. by apply dist_S. Qed. Global Instance TSR_proto_proper a : @@ -175,8 +175,8 @@ Section proto_ofe. prot1 ≡ prot2 ⊣⊢@{uPredI M} match prot1, prot2 with | TEnd, TEnd => True - | TSR a1 P1 prot1, TSR a2 P2 prot2 => - ⌜ a1 = a2 ⌠∧ (∀ v, P1 v ≡ P2 v) ∧ ▷ (∀ v, prot1 v ≡ prot2 v) + | TSR a1 Φ1 prot1, TSR a2 Φ2 prot2 => + ⌜ a1 = a2 ⌠∧ (∀ v, Φ1 v ≡ Φ2 v) ∧ ▷ (∀ v, prot1 v ≡ prot2 v) | _, _ => False end. Proof. @@ -185,16 +185,16 @@ Section proto_ofe. by intros [[= ->] [??]]; destruct n; constructor. Qed. - Lemma proto_later_equiv M prot a P2 prot2 : - ▷ (prot ≡ TSR a P2 prot2) -∗ - ◇ (∃ P1 prot1, prot ≡ TSR a P1 prot1 ∗ - ▷ (∀ v, P1 v ≡ P2 v) ∗ + Lemma proto_later_equiv M prot a Φ2 prot2 : + ▷ (prot ≡ TSR a Φ2 prot2) -∗ + ◇ (∃ Φ1 prot1, prot ≡ TSR a Φ1 prot1 ∗ + ▷ (∀ v, Φ1 v ≡ Φ2 v) ∗ ▷ ▷ (∀ v, prot1 v ≡ prot2 v) : uPred M). Proof. - iIntros "Heq". destruct prot as [|a' P1 prot1]. + iIntros "Heq". destruct prot as [|a' Φ1 prot1]. - iDestruct (proto_equivI with "Heq") as ">[]". - - iDestruct (proto_equivI with "Heq") as "(>-> & HPeq & Hsteq)". - iExists P1, prot1. auto. + - iDestruct (proto_equivI with "Heq") as "(>-> & HΦeq & Hsteq)". + iExists Φ1, prot1. auto. Qed. Lemma dual_proto_flip {M} prot1 prot2 : @@ -212,7 +212,7 @@ CoFixpoint proto_map {V PROP PROP'} (f : PROP → PROP') (prot : proto V PROP) : proto V PROP' := match prot with | TEnd => TEnd - | TSR a P prot => TSR a (λ v, f (P v)) (λ v, proto_map f (prot v)) + | TSR a Φ prot => TSR a (λ v, f (Φ v)) (λ v, proto_map f (prot v)) end. Lemma proto_map_ext_ne {V PROP} {PROP' : ofeT} (f g : PROP → PROP') (prot : proto V PROP) n : @@ -220,7 +220,7 @@ Lemma proto_map_ext_ne {V PROP} {PROP' : ofeT} Proof. revert n prot. cofix IH=> n prot Hf. rewrite -(proto_force_eq (proto_map f prot)) -(proto_force_eq (proto_map g prot)). - destruct prot as [|a P prot], n as [|n]; constructor=> v //. apply IH; auto using dist_S. + destruct prot as [|a Φ prot], n as [|n]; constructor=> v //. apply IH; auto using dist_S. Qed. Lemma proto_map_ext {V PROP} {B : ofeT} (f g : PROP → B) (prot : proto V PROP) : (∀ x, f x ≡ g x) → proto_map f prot ≡ proto_map g prot. @@ -305,10 +305,10 @@ Section DualProto. Global Instance is_dual_end : IsDualProto (TEnd : proto V PROP) TEnd. Proof. by rewrite /IsDualProto -(proto_force_eq (dual_proto _)). Qed. - Global Instance is_dual_tsr a1 a2 P (prot1 prot2 : V → proto V PROP) : + Global Instance is_dual_tsr a1 a2 Φ (prot1 prot2 : V → proto V PROP) : IsDualAction a1 a2 → (∀ x, IsDualProto (prot1 x) (prot2 x)) → - IsDualProto (TSR a1 P prot1) (TSR a2 P prot2). + IsDualProto (TSR a1 Φ prot1) (TSR a2 Φ prot2). Proof. rewrite /IsDualAction /IsDualProto. intros <- Hst. rewrite /IsDualProto -(proto_force_eq (dual_proto _)) /=. diff --git a/theories/proto/proto_enc.v b/theories/proto/proto_enc.v index 2ef46d5..f9e5bd1 100644 --- a/theories/proto/proto_enc.v +++ b/theories/proto/proto_enc.v @@ -5,16 +5,16 @@ Section DualProtoEnc. Context `{ValEncDec V} {PROP: bi} . Definition TSR' - (a : action) (P : V → PROP) (prot : V → proto val PROP) : proto val PROP := + (a : action) (Φ : V → PROP) (prot : V → proto val PROP) : proto val PROP := TSR a - (λ v, if val_decode v is Some x then P x else False)%I + (λ v, if val_decode v is Some x then Φ x else False)%I (λ v, if val_decode v is Some x then prot x else TEnd (* dummy *)). Global Instance: Params (@TSR') 3. - Global Instance is_dual_tsr' a1 a2 P (st1 st2 : V → proto val PROP) : + Global Instance is_dual_tsr' a1 a2 Φ (st1 st2 : V → proto val PROP) : IsDualAction a1 a2 → (∀ x, IsDualProto (st1 x) (st2 x)) → - IsDualProto (TSR' a1 P st1) (TSR' a2 P st2). + IsDualProto (TSR' a1 Φ st1) (TSR' a2 Φ st2). Proof. rewrite /IsDualAction /IsDualProto. intros <- Hst. rewrite -(proto_force_eq (dual_proto _)). @@ -33,41 +33,39 @@ Notation "<!> x , prot" := (<!> x @ True, (prot x))%proto (at level 200, x pattern, prot at level 200) : proto_scope. Notation "<?> x , prot" := (<?> x @ True, (prot x))%proto (at level 200, x pattern, prot at level 200) : proto_scope. -Notation "<!> @ P , prot" := (<!> dummy__ @ P dummy__, prot dummy__)%proto +Notation "<!> @ Φ , prot" := (TSR' Send Φ prot) (at level 200, prot at level 200) : proto_scope. -Notation "<?> @ P , prot" := (<?> dummy__ @ P dummy__, prot dummy__)%proto +Notation "<?> @ Φ , prot" := (TSR' Receive Φ prot) (at level 200, prot at level 200) : proto_scope. Section proto_enc_specs. Context `{!heapG Σ, !logrelG val Σ} `{ValEncDec A} (N : namespace). - Lemma send_st_spec prot γ c s (P : A → iProp Σ) w : - {{{ P w ∗ ⟦ c @ s : <!> @ P, prot ⟧{N,γ} }}} + Lemma send_st_spec prot γ c s (Φ : A → iProp Σ) w : + {{{ Φ w ∗ ⟦ c @ s : <!> @ Φ, prot ⟧{N,γ} }}} send c #s (val_encode w) {{{ RET #(); ⟦ c @ s : prot w ⟧{N,γ} }}}. Proof. - iIntros (Φ) "[HP Hsend] HΦ". - iApply (send_st_spec with "[HP $Hsend]"). + iIntros (Ψ) "[HΦ Hsend] HΨ". + iApply (send_st_spec with "[HΦ $Hsend]"). { by rewrite val_encode_decode. } iNext. rewrite val_encode_decode. - by iApply "HΦ". + by iApply "HΨ". Qed. - Lemma recv_st_spec prot γ c s (P : A → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P, prot ⟧{N,γ} }}} + Lemma recv_st_spec prot γ c s (Φ : A → iProp Σ) : + {{{ ⟦ c @ s : <?> @ Φ, prot ⟧{N,γ} }}} recv c #s - {{{ v, RET (val_encode v); ⟦ c @ s : prot v ⟧{N,γ} ∗ P v }}}. + {{{ v, RET (val_encode v); ⟦ c @ s : prot v ⟧{N,γ} ∗ Φ v }}}. Proof. - iIntros (Φ) "Hrecv HΦ". + iIntros (Ψ) "Hrecv HΨ". iApply (recv_st_spec with "Hrecv"). - iNext. iIntros (v). - iIntros "[H HP]". - iAssert (∃ w, ⌜val_decode v = Some w⌠∗ P w)%I with "[HP]" as (w Hw) "HP". + iIntros "!>" (v) "[H HΦ]". + iAssert (∃ w, ⌜val_decode v = Some w⌠∗ Φ w)%I with "[HΦ]" as (w Hw) "HΦ". { destruct (val_decode v) as [x|]; last done. iExists x. by iFrame. } - iSpecialize ("HΦ" $!w). apply val_decode_encode in Hw as <-. - iApply "HΦ". iFrame "HP". + iApply ("HΨ" $!w). iFrame "HΦ". by rewrite val_encode_decode. Qed. End proto_enc_specs. diff --git a/theories/proto/proto_specs.v b/theories/proto/proto_specs.v index cd99fde..cef54d1 100644 --- a/theories/proto/proto_specs.v +++ b/theories/proto/proto_specs.v @@ -20,7 +20,7 @@ Fixpoint prot_eval `{!logrelG val Σ} (vs : list val) (prot1 prot2 : proto val ( match vs with | [] => prot1 ≡ dual_proto prot2 | v::vs => match prot2 with - | TSR Receive P prot2 => P v ∗ ▷ prot_eval vs prot1 (prot2 v) + | TSR Receive Φ prot2 => Φ v ∗ ▷ prot_eval vs prot1 (prot2 v) | _ => False end end%I. @@ -67,7 +67,7 @@ Section proto. Global Instance prot_eval_ne : NonExpansive2 (prot_eval vs). Proof. induction vs as [|v vs IH]; - destruct 2 as [n|[] P1 P2 prot1 prot2|n [] P1 P2 prot1 prot2]=> //=. + destruct 2 as [n|[] Φ1 Φ2 prot1 prot2|n [] Φ1 Φ2 prot1 prot2]=> //=. - by repeat f_equiv. - f_equiv. done. f_equiv. by constructor. - f_equiv. done. f_equiv. by constructor. @@ -114,24 +114,24 @@ Section proto. by rewrite own_op. Qed. - Lemma prot_eval_send (P : val →iProp Σ) prot vs v protr : - P v -∗ prot_eval vs (<!> @ P, prot) protr -∗ prot_eval (vs ++ [v]) (prot v) protr. + Lemma prot_eval_send (Φ : val → iProp Σ) prot vs v protr : + Φ v -∗ prot_eval vs (<!> @ Φ, prot) protr -∗ prot_eval (vs ++ [v]) (prot v) protr. Proof. - iIntros "HP". + iIntros "HΦ". iRevert (protr). iInduction vs as [|v' vs] "IH"; iIntros (protr) "Heval". - iDestruct (dual_proto_flip with "Heval") as "Heval". iRewrite -"Heval"; simpl. rewrite dual_proto_involutive. by iFrame. - - destruct protr as [|[] P' protr]=> //=. + - destruct protr as [|[] Φ' protr]=> //=. iDestruct "Heval" as "[$ Heval]". - by iApply ("IH" with "HP"). + by iApply ("IH" with "HΦ"). Qed. - Lemma prot_eval_recv (P : val → iProp Σ) prot1 l prot2 v : - prot_eval (v :: l) prot1 (<?> @ P, prot2) -∗ ▷ prot_eval l prot1 (prot2 v) ∗ P v. - Proof. iDestruct 1 as "[HP Heval]". iFrame. Qed. + Lemma prot_eval_recv (Φ : val → iProp Σ) prot1 l prot2 v : + prot_eval (v :: l) prot1 (<?> @ Φ, prot2) -∗ ▷ prot_eval l prot1 (prot2 v) ∗ Φ v. + Proof. iDestruct 1 as "[HΦ Heval]". iFrame. Qed. Lemma new_chan_vs prot E c cγ : is_chan N cγ c ∗ @@ -175,11 +175,11 @@ Section proto. by iFrame. Qed. - Lemma send_vs c γ s (P : val → iProp Σ) prot E : + Lemma send_vs c γ s (Φ : val → iProp Σ) prot E : ↑N ⊆ E → - ⟦ c @ s : TSR Send P prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, + ⟦ c @ s : <!> @ Φ, prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, chan_own (prot_c_name γ) s vs ∗ - ▷ ∀ v, P v -∗ + ▷ ∀ v, Φ v -∗ chan_own (prot_c_name γ) s (vs ++ [v]) ={E∖↑N,E}=∗ ⟦ c @ s : prot v ⟧{N,γ}. Proof. @@ -188,7 +188,7 @@ Section proto. iModIntro. destruct s. - iExists _. - iIntros "{$Hclf} !>" (v) "HP Hclf". + iIntros "{$Hclf} !>" (v) "HΦ Hclf". iRename "Hstf" into "Hstlf". iDestruct (prot_excl_eq with "Hstla Hstlf") as "#Heq". iMod (prot_excl_update _ _ _ _ (prot v) with "Hstla Hstlf") as "[Hstla Hstlf]". @@ -198,14 +198,14 @@ Section proto. iLeft. iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]". - iSplit=> //. - iApply (prot_eval_send with "HP"). + iApply (prot_eval_send with "HΦ"). by iRewrite "Heq" in "Heval". - iRewrite "Heq" in "Heval". destruct r as [|vr r]=> //=. iSplit; first done. - iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_proto_involutive. } + iRewrite "Heval". simpl. iFrame "HΦ". by rewrite dual_proto_involutive. } iModIntro. iFrame. auto. - iExists _. - iIntros "{$Hcrf} !>" (v) "HP Hcrf". + iIntros "{$Hcrf} !>" (v) "HΦ Hcrf". iRename "Hstf" into "Hstrf". iDestruct (prot_excl_eq with "Hstra Hstrf") as "#Heq". iMod (prot_excl_update _ _ _ _ (prot v) with "Hstra Hstrf") as "[Hstra Hstrf]". @@ -216,38 +216,38 @@ Section proto. iDestruct "Hinv'" as "[[-> Heval]|[-> Heval]]". - iRewrite "Heq" in "Heval". destruct l as [|vl l]=> //. iSplit; first done. simpl. - iRewrite "Heval". simpl. iFrame "HP". by rewrite dual_proto_involutive. + iRewrite "Heval". simpl. iFrame "HΦ". by rewrite dual_proto_involutive. - iSplit=> //. - iApply (prot_eval_send with "HP"). + iApply (prot_eval_send with "HΦ"). by iRewrite "Heq" in "Heval". } iModIntro. iFrame. auto. Qed. - Lemma send_st_spec prot γ c s (P : val → iProp Σ) v : - {{{ P v ∗ ⟦ c @ s : <!> @ P , prot ⟧{N,γ} }}} + Lemma send_st_spec prot γ c s (Φ : val → iProp Σ) v : + {{{ Φ v ∗ ⟦ c @ s : <!> @ Φ, prot ⟧{N,γ} }}} send c #s v {{{ RET #(); ⟦ c @ s : prot v ⟧{N,γ} }}}. Proof. - iIntros (Φ) "[HP Hsend] HΦ". + iIntros (Ψ) "[HΦ Hsend] HΨ". iApply (send_spec with "[#]"). { iDestruct "Hsend" as "[? [$ ?]]". } iMod (send_vs with "Hsend") as (vs) "[Hch H]"; first done. iModIntro. iExists vs. iFrame "Hch". - iIntros "!> Hupd". iApply "HΦ". - iApply ("H" $! v with "HP"). by destruct s. + iIntros "!> Hupd". iApply "HΨ". + iApply ("H" $! v with "HΦ"). by destruct s. Qed. - Lemma try_recv_vs c γ s (P : val → iProp Σ) prot E : + Lemma try_recv_vs c γ s (Φ : val → iProp Σ) prot E : ↑N ⊆ E → - ⟦ c @ s : TSR Receive P prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, + ⟦ c @ s : TSR Receive Φ prot ⟧{N,γ} ={E,E∖↑N}=∗ ∃ vs, chan_own (prot_c_name γ) (dual_side s) vs ∗ ▷ ((⌜vs = []⌠-∗ chan_own (prot_c_name γ) (dual_side s) vs ={E∖↑N,E}=∗ - ⟦ c @ s : TSR Receive P prot ⟧{N,γ}) ∧ + ⟦ c @ s : <?> @ Φ, prot ⟧{N,γ}) ∧ (∀ v vs', ⌜vs = v :: vs'⌠-∗ chan_own (prot_c_name γ) (dual_side s) vs' ={E∖↑N,E}=∗ - ⟦ c @ s : (prot v) ⟧{N,γ} ∗ ▷ P v)). + ⟦ c @ s : prot v ⟧{N,γ} ∗ ▷ Φ v)). Proof. iIntros (Hin) "[Hstf #[Hcctx Hinv]]". iInv N as (l r protl protr) "(>Hclf & >Hcrf & Hstla & Hstra & Hinv')" "Hclose". @@ -295,13 +295,13 @@ Section proto. iNext. by iRewrite -("HPeq" $! v). Qed. - Lemma try_recv_st_spec prot γ c s (P : val → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P , prot ⟧{N,γ} }}} + Lemma try_recv_st_spec prot γ c s (Φ : val → iProp Σ) : + {{{ ⟦ c @ s : <?> @ Φ, prot ⟧{N,γ} }}} try_recv c #s - {{{ v, RET v; (⌜v = NONEV⌠∧ ⟦ c @ s : <?> @ P, prot ⟧{N,γ}) ∨ - (∃ w, ⌜v = SOMEV w⌠∧ ⟦ c @ s : prot w ⟧{N,γ} ∗ ▷ P w)}}}. + {{{ v, RET v; (⌜v = NONEV⌠∧ ⟦ c @ s : <?> @ Φ, prot ⟧{N,γ}) ∨ + (∃ w, ⌜v = SOMEV w⌠∧ ⟦ c @ s : prot w ⟧{N,γ} ∗ ▷ Φ w)}}}. Proof. - iIntros (Φ) "Hrecv HΦ". + iIntros (Ψ) "Hrecv HΨ". iApply (try_recv_spec with "[#]"). { iDestruct "Hrecv" as "[? [$ ?]]". } iMod (try_recv_vs with "Hrecv") as (vs) "[Hch H]"; first done. @@ -312,27 +312,27 @@ Section proto. iDestruct "H" as "[H _]". iMod ("H" $!Hvs with "Hown") as "H". iModIntro. - iApply "HΦ"=> //. + iApply "HΨ"=> //. eauto with iFrame. - iIntros (v vs' Hvs) "Hown". iDestruct "H" as "[_ H]". iMod ("H" $!v vs' Hvs with "Hown") as "H". iModIntro. - iApply "HΦ"; eauto with iFrame. + iApply "HΨ"; eauto with iFrame. Qed. - Lemma recv_st_spec prot γ c s (P : val → iProp Σ) : - {{{ ⟦ c @ s : <?> @ P , prot ⟧{N,γ} }}} + Lemma recv_st_spec prot γ c s (Φ : val → iProp Σ) : + {{{ ⟦ c @ s : <?> @ Φ, prot ⟧{N,γ} }}} recv c #s - {{{ v, RET v; ⟦ c @ s : prot v ⟧{N,γ} ∗ P v }}}. + {{{ v, RET v; ⟦ c @ s : prot v ⟧{N,γ} ∗ Φ v }}}. Proof. - iIntros (Φ) "Hrecv HΦ". + iIntros (Ψ) "Hrecv HΨ". iLöb as "IH". wp_rec. wp_apply (try_recv_st_spec with "Hrecv"). iIntros (v) "H". iDestruct "H" as "[[-> H]| H]". - wp_pures. by iApply ("IH" with "[H]"). - - iDestruct "H" as (w ->) "[H HP]". - wp_pures. iApply "HΦ". iFrame. + - iDestruct "H" as (w ->) "[H HΦ]". + wp_pures. iApply "HΨ". iFrame. Qed. End proto. -- GitLab