(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file collects definitions and theorems on finite collections. Most importantly, it implements a fold and size function and some useful induction principles on finite collections . *) From Coq Require Import Permutation. From stdpp Require Import relations listset. From stdpp Require Export numbers collections. Instance collection_size `{Elements A C} : Size C := length ∘ elements. Definition collection_fold `{Elements A C} {B} (f : A → B → B) (b : B) : C → B := foldr f b ∘ elements. Instance collection_filter `{Elements A C, Empty C, Singleton A C, Union C} : Filter A C := λ P _ X, of_list (filter P (elements X)). Section fin_collection. Context `{FinCollection A C}. Implicit Types X Y : C. Lemma fin_collection_finite X : set_finite X. Proof. by exists (elements X); intros; rewrite elem_of_elements. Qed. Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100. Proof. refine (cast_if (decide_rel (∈) x (elements X))); by rewrite <-(elem_of_elements _). Defined. (** * The [elements] operation *) Global Instance elements_proper: Proper ((≡) ==> (≡ₚ)) (elements (C:=C)). Proof. intros ?? E. apply NoDup_Permutation. - apply NoDup_elements. - apply NoDup_elements. - intros. by rewrite !elem_of_elements, E. Qed. Lemma elements_empty : elements (∅ : C) = []. Proof. apply elem_of_nil_inv; intros x. rewrite elem_of_elements, elem_of_empty; tauto. Qed. Lemma elements_empty_inv X : elements X = [] → X ≡ ∅. Proof. intros HX; apply elem_of_equiv_empty; intros x. rewrite <-elem_of_elements, HX, elem_of_nil. tauto. Qed. Lemma elements_empty' X : elements X = [] ↔ X ≡ ∅. Proof. split; intros HX; [by apply elements_empty_inv|]. by rewrite <-Permutation_nil, HX, elements_empty. Qed. Lemma elements_union_singleton (X : C) x : x ∉ X → elements ({[ x ]} ∪ X) ≡ₚ x :: elements X. Proof. intros ?; apply NoDup_Permutation. { apply NoDup_elements. } { by constructor; rewrite ?elem_of_elements; try apply NoDup_elements. } intros y; rewrite elem_of_elements, elem_of_union, elem_of_singleton. by rewrite elem_of_cons, elem_of_elements. Qed. Lemma elements_singleton x : elements {[ x ]} = [x]. Proof. apply Permutation_singleton. by rewrite <-(right_id ∅ (∪) {[x]}), elements_union_singleton, elements_empty by set_solver. Qed. Lemma elements_contains X Y : X ⊆ Y → elements X `contains` elements Y. Proof. intros; apply NoDup_contains; auto using NoDup_elements. intros x. rewrite !elem_of_elements; auto. Qed. (** * The [size] operation *) Global Instance collection_size_proper: Proper ((≡) ==> (=)) (@size C _). Proof. intros ?? E. apply Permutation_length. by rewrite E. Qed. Lemma size_empty : size (∅ : C) = 0. Proof. unfold size, collection_size. simpl. by rewrite elements_empty. Qed. Lemma size_empty_inv (X : C) : size X = 0 → X ≡ ∅. Proof. intros; apply equiv_empty; intros x; rewrite <-elem_of_elements. by rewrite (nil_length_inv (elements X)), ?elem_of_nil. Qed. Lemma size_empty_iff (X : C) : size X = 0 ↔ X ≡ ∅. Proof. split. apply size_empty_inv. by intros ->; rewrite size_empty. Qed. Lemma size_non_empty_iff (X : C) : size X ≠ 0 ↔ X ≢ ∅. Proof. by rewrite size_empty_iff. Qed. Lemma collection_choose_or_empty X : (∃ x, x ∈ X) ∨ X ≡ ∅. Proof. destruct (elements X) as [|x l] eqn:HX; [right|left]. - apply equiv_empty; intros x. by rewrite <-elem_of_elements, HX, elem_of_nil. - exists x. rewrite <-elem_of_elements, HX. by left. Qed. Lemma collection_choose X : X ≢ ∅ → ∃ x, x ∈ X. Proof. intros. by destruct (collection_choose_or_empty X). Qed. Lemma collection_choose_L `{!LeibnizEquiv C} X : X ≠ ∅ → ∃ x, x ∈ X. Proof. unfold_leibniz. apply collection_choose. Qed. Lemma size_pos_elem_of X : 0 < size X → ∃ x, x ∈ X. Proof. intros Hsz. destruct (collection_choose_or_empty X) as [|HX]; [done|]. contradict Hsz. rewrite HX, size_empty; lia. Qed. Lemma size_singleton (x : A) : size {[ x ]} = 1. Proof. unfold size, collection_size. simpl. by rewrite elements_singleton. Qed. Lemma size_singleton_inv X x y : size X = 1 → x ∈ X → y ∈ X → x = y. Proof. unfold size, collection_size. simpl. rewrite <-!elem_of_elements. generalize (elements X). intros [|? l]; intro; simplify_eq/=. rewrite (nil_length_inv l), !elem_of_list_singleton by done; congruence. Qed. Lemma size_1_elem_of X : size X = 1 → ∃ x, X ≡ {[ x ]}. Proof. intros E. destruct (size_pos_elem_of X); auto with lia. exists x. apply elem_of_equiv. split. - rewrite elem_of_singleton. eauto using size_singleton_inv. - set_solver. Qed. Lemma size_union X Y : X ⊥ Y → size (X ∪ Y) = size X + size Y. Proof. intros. unfold size, collection_size. simpl. rewrite <-app_length. apply Permutation_length, NoDup_Permutation. - apply NoDup_elements. - apply NoDup_app; repeat split; try apply NoDup_elements. intros x; rewrite !elem_of_elements; set_solver. - intros. by rewrite elem_of_app, !elem_of_elements, elem_of_union. Qed. Lemma size_union_alt X Y : size (X ∪ Y) = size X + size (Y ∖ X). Proof. rewrite <-size_union by set_solver. setoid_replace (Y ∖ X) with ((Y ∪ X) ∖ X) by set_solver. rewrite <-union_difference, (comm (∪)); set_solver. Qed. Lemma subseteq_size X Y : X ⊆ Y → size X ≤ size Y. Proof. intros. rewrite (union_difference X Y), size_union_alt by done. lia. Qed. Lemma subset_size X Y : X ⊂ Y → size X < size Y. Proof. intros. rewrite (union_difference X Y) by set_solver. rewrite size_union_alt, difference_twice. cut (size (Y ∖ X) ≠ 0); [lia |]. by apply size_non_empty_iff, non_empty_difference. Qed. (** * Induction principles *) Lemma collection_wf : wf (strict (@subseteq C _)). Proof. apply (wf_projected (<) size); auto using subset_size, lt_wf. Qed. Lemma collection_ind (P : C → Prop) : Proper ((≡) ==> iff) P → P ∅ → (∀ x X, x ∉ X → P X → P ({[ x ]} ∪ X)) → ∀ X, P X. Proof. intros ? Hemp Hadd. apply well_founded_induction with (⊂). { apply collection_wf. } intros X IH. destruct (collection_choose_or_empty X) as [[x ?]|HX]. - rewrite (union_difference {[ x ]} X) by set_solver. apply Hadd. set_solver. apply IH; set_solver. - by rewrite HX. Qed. Lemma collection_ind_L `{!LeibnizEquiv C} (P : C → Prop) : P ∅ → (∀ x X, x ∉ X → P X → P ({[ x ]} ∪ X)) → ∀ X, P X. Proof. apply collection_ind. by intros ?? ->%leibniz_equiv_iff. Qed. (** * The [collection_fold] operation *) Lemma collection_fold_ind {B} (P : B → C → Prop) (f : A → B → B) (b : B) : Proper ((=) ==> (≡) ==> iff) P → P b ∅ → (∀ x X r, x ∉ X → P r X → P (f x r) ({[ x ]} ∪ X)) → ∀ X, P (collection_fold f b X) X. Proof. intros ? Hemp Hadd. cut (∀ l, NoDup l → ∀ X, (∀ x, x ∈ X ↔ x ∈ l) → P (foldr f b l) X). { intros help ?. apply help; [apply NoDup_elements|]. symmetry. apply elem_of_elements. } induction 1 as [|x l ?? IH]; simpl. - intros X HX. setoid_rewrite elem_of_nil in HX. rewrite equiv_empty. done. set_solver. - intros X HX. setoid_rewrite elem_of_cons in HX. rewrite (union_difference {[ x ]} X) by set_solver. apply Hadd. set_solver. apply IH. set_solver. Qed. Lemma collection_fold_proper {B} (R : relation B) `{!Equivalence R} (f : A → B → B) (b : B) `{!Proper ((=) ==> R ==> R) f} (Hf : ∀ a1 a2 b, R (f a1 (f a2 b)) (f a2 (f a1 b))) : Proper ((≡) ==> R) (collection_fold f b : C → B). Proof. intros ?? E. apply (foldr_permutation R f b); auto. by rewrite E. Qed. (** * Minimal elements *) Lemma minimal_exists `{!StrictOrder R, ∀ x y, Decision (R x y)} (X : C) : X ≢ ∅ → ∃ x, x ∈ X ∧ minimal R x X. Proof. pattern X; apply collection_ind; clear X. { by intros X X' HX; setoid_rewrite HX. } { done. } intros x X ? IH Hemp. destruct (collection_choose_or_empty X) as [[z ?]|HX]. { destruct IH as (x' & Hx' & Hmin); [set_solver|]. destruct (decide (R x x')). - exists x; split; [set_solver|]. eauto using union_minimal, singleton_minimal, minimal_weaken. - exists x'; split; [set_solver|]. auto using union_minimal, singleton_minimal_not_above. } exists x; split; [set_solver|]. rewrite HX, (right_id _ (∪)). apply singleton_minimal. Qed. Lemma minimal_exists_L `{!LeibnizEquiv C, !StrictOrder R, ∀ x y, Decision (R x y)} (X : C) : X ≠ ∅ → ∃ x, x ∈ X ∧ minimal R x X. Proof. unfold_leibniz. apply minimal_exists. Qed. (** * Filter *) Lemma elem_of_filter (P : A → Prop) `{!∀ x, Decision (P x)} X x : x ∈ filter P X ↔ P x ∧ x ∈ X. Proof. unfold filter, collection_filter. by rewrite elem_of_of_list, elem_of_list_filter, elem_of_elements. Qed. (** * Decision procedures *) Global Instance set_Forall_dec `(P : A → Prop) `{∀ x, Decision (P x)} X : Decision (set_Forall P X) | 100. Proof. refine (cast_if (decide (Forall P (elements X)))); abstract (unfold set_Forall; setoid_rewrite <-elem_of_elements; by rewrite <-Forall_forall). Defined. Global Instance set_Exists_dec `(P : A → Prop) `{∀ x, Decision (P x)} X : Decision (set_Exists P X) | 100. Proof. refine (cast_if (decide (Exists P (elements X)))); abstract (unfold set_Exists; setoid_rewrite <-elem_of_elements; by rewrite <-Exists_exists). Defined. End fin_collection.