Commit dcff8ded authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Use qualified module names and coqc -Q instead of -R.

parent 11790649
......@@ -6,8 +6,8 @@ main advantage of these association lists compared to search trees, is that it
has canonical representatives and thus extensional Leibniz equality. Compared
to a naive unordered association list, the merge operation (used for unions,
intersections, and difference) is also linear-time. *)
Require Import mapset.
Require Export fin_maps.
Require Import prelude.mapset.
Require Export prelude.fin_maps.
(** Because the association list is sorted using [strict lexico] instead of
[lexico], it automatically guarantees that no duplicates exist. *)
......
......@@ -3,7 +3,7 @@
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
Require Export base tactics orders.
Require Export prelude.base prelude.tactics prelude.orders.
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
x, x X x Y.
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export list.
Require Export prelude.list.
Local Obligation Tactic := idtac.
Local Open Scope positive.
......
......@@ -3,7 +3,7 @@
(** This file collects theorems, definitions, tactics, related to propositions
with a decidable equality. Such propositions are collected by the [Decision]
type class. *)
Require Export proof_irrel.
Require Export prelude.proof_irrel.
Hint Extern 200 (Decision _) => progress (lazy beta) : typeclass_instances.
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export list.
Require Export prelude.list.
Definition error (S E A : Type) : Type := S E + (A * S).
......
......@@ -3,8 +3,8 @@
(** This file collects definitions and theorems on finite collections. Most
importantly, it implements a fold and size function and some useful induction
principles on finite collections . *)
Require Import Permutation relations listset.
Require Export numbers collections.
Require Import Permutation prelude.relations prelude.listset.
Require Export prelude.numbers prelude.collections.
Instance collection_size `{Elements A C} : Size C := length elements.
Definition collection_fold `{Elements A C} {B}
......
......@@ -3,7 +3,7 @@
(** This file provides an axiomatization of the domain function of finite
maps. We provide such an axiomatization, instead of implementing the domain
function in a generic way, to allow more efficient implementations. *)
Require Export collections fin_maps.
Require Export prelude.collections prelude.fin_maps.
Class FinMapDom K M D `{FMap M,
A, Lookup K A (M A), A, Empty (M A), A, PartialAlter K A (M A),
......
......@@ -5,7 +5,7 @@ finite maps and collects some theory on it. Most importantly, it proves useful
induction principles for finite maps and implements the tactic
[simplify_map_equality] to simplify goals involving finite maps. *)
Require Import Permutation.
Require Export relations vector orders.
Require Export prelude.relations prelude.vector prelude.orders.
(** * Axiomatization of finite maps *)
(** We require Leibniz equality to be extensional on finite maps. This of
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Export countable list.
Require Export prelude.countable prelude.list.
Obligation Tactic := idtac.
Class Finite A `{ x y : A, Decision (x = y)} := {
......
......@@ -3,8 +3,8 @@
(** This file implements finite set using hash maps. Hash sets are represented
using radix-2 search trees. Each hash bucket is thus indexed using an binary
integer of type [Z], and contains an unordered list without duplicates. *)
Require Export fin_maps listset.
Require Import zmap.
Require Export prelude.fin_maps prelude.listset.
Require Import prelude.zmap.
Record hashset {A} (hash : A Z) := Hashset {
hashset_car : Zmap (list A);
......
......@@ -2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This files defines a lexicographic order on various common data structures
and proves that it is a partial order having a strong variant of trichotomy. *)
Require Import numbers.
Require Import prelude.numbers.
Notation cast_trichotomy T :=
match T with
......
......@@ -3,7 +3,7 @@
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
Require Export Permutation.
Require Export numbers base decidable option.
Require Export prelude.numbers prelude.base prelude.decidable prelude.option.
Arguments length {_} _.
Arguments cons {_} _ _.
......
......@@ -2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file implements finite set as unordered lists without duplicates
removed. This implementation forms a monad. *)
Require Export base decidable collections list.
Require Export prelude.base prelude.decidable prelude.collections prelude.list.
Record listset A := Listset { listset_car: list A }.
Arguments listset_car {_} _.
......
......@@ -3,7 +3,7 @@
(** This file implements finite as unordered lists without duplicates.
Although this implementation is slow, it is very useful as decidable equality
is the only constraint on the carrier set. *)
Require Export base decidable collections list.
Require Export prelude.base prelude.decidable prelude.collections prelude.list.
Record listset_nodup A := ListsetNoDup {
listset_nodup_car : list A; listset_nodup_prf : NoDup listset_nodup_car
......
......@@ -3,7 +3,7 @@
(** This files gives an implementation of finite sets using finite maps with
elements of the unit type. Since maps enjoy extensional equality, the
constructed finite sets do so as well. *)
Require Export fin_map_dom.
Require Export prelude.fin_map_dom.
Record mapset (M : Type Type) : Type :=
Mapset { mapset_car: M (unit : Type) }.
......
......@@ -3,7 +3,7 @@
(** This files implements a type [natmap A] of finite maps whose keys range
over Coq's data type of unary natural numbers [nat]. The implementation equips
a list with a proof of canonicity. *)
Require Import fin_maps mapset.
Require Import prelude.fin_maps prelude.mapset.
Notation natmap_raw A := (list (option A)).
Definition natmap_wf {A} (l : natmap_raw A) :=
......
......@@ -2,8 +2,8 @@
(* This file is distributed under the terms of the BSD license. *)
(** This files extends the implementation of finite over [positive] to finite
maps whose keys range over Coq's data type of binary naturals [N]. *)
Require Import pmap mapset.
Require Export prelude fin_maps.
Require Import prelude.pmap prelude.mapset.
Require Export prelude.prelude prelude.fin_maps.
Local Open Scope N_scope.
......
......@@ -5,7 +5,7 @@ natural numbers, and the type [Z] for integers. It also declares some useful
notations. *)
Require Export Eqdep PArith NArith ZArith NPeano.
Require Import QArith Qcanon.
Require Export base decidable.
Require Export prelude.base prelude.decidable.
Open Scope nat_scope.
Coercion Z.of_nat : nat >-> Z.
......
......@@ -2,7 +2,7 @@
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on the option
data type that are not in the Coq standard library. *)
Require Export base tactics decidable.
Require Export prelude.base prelude.tactics prelude.decidable.
Inductive option_reflect {A} (P : A Prop) (Q : Prop) : option A Type :=
| ReflectSome x : P x option_reflect P Q (Some x)
......
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
Require Import mapset.
Require Export prelude fin_maps.
Require Import prelude.mapset.
Require Export prelude.prelude prelude.fin_maps.
Record optionmap (M : Type Type) (A : Type) : Type :=
OptionMap { optionmap_None : option A; optionmap_Some : M A }.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment