Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
stdpp
Commits
cac96811
Commit
cac96811
authored
Aug 02, 2016
by
Robbert Krebbers
Browse files
Sets of sequences of natural numbers.
parent
bcaf2016
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/collections.v
View file @
cac96811
...
...
@@ -948,3 +948,38 @@ Section more_finite.
intros
x
?
;
destruct
(
decide
(
x
∈
Y
))
;
rewrite
elem_of_app
;
set_solver
.
Qed
.
End
more_finite
.
(** Sets of sequences of natural numbers *)
(* The set [seq_seq start len] of natural numbers contains the sequence
[start, start + 1, ..., start + (len-1)]. *)
Fixpoint
seq_set
`
{
Singleton
nat
C
,
Union
C
,
Empty
C
}
(
start
len
:
nat
)
:
C
:
=
match
len
with
|
O
=>
∅
|
S
len'
=>
{[
start
]}
∪
seq_set
(
S
start
)
len'
end
.
Section
seq_set
.
Context
`
{
SimpleCollection
nat
C
}.
Implicit
Types
start
len
x
:
nat
.
Lemma
elem_of_seq_set
start
len
x
:
x
∈
seq_set
start
len
↔
start
≤
x
<
start
+
len
.
Proof
.
revert
start
.
induction
len
as
[|
len
IH
]
;
intros
start
;
simpl
.
-
rewrite
elem_of_empty
.
omega
.
-
rewrite
elem_of_union
,
elem_of_singleton
,
IH
.
omega
.
Qed
.
Lemma
seq_set_S_disjoint
start
len
:
{[
start
+
len
]}
⊥
seq_set
start
len
.
Proof
.
intros
x
.
rewrite
elem_of_singleton
,
elem_of_seq_set
.
omega
.
Qed
.
Lemma
seq_set_S_union
start
len
:
seq_set
start
(
C
:
=
C
)
(
S
len
)
≡
{[
start
+
len
]}
∪
seq_set
start
len
.
Proof
.
intros
x
.
rewrite
elem_of_union
,
elem_of_singleton
,
!
elem_of_seq_set
.
omega
.
Qed
.
Lemma
seq_set_S_union_L
`
{!
LeibnizEquiv
C
}
start
len
:
seq_set
start
(
S
len
)
=
{[
start
+
len
]}
∪
seq_set
start
len
.
Proof
.
unfold_leibniz
.
apply
seq_set_S_union
.
Qed
.
End
seq_set
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment