Commit 793110fe authored by Robbert Krebbers's avatar Robbert Krebbers

`Equivalence` for `≡` on gmultisets.

parent 0d9f04c5
......@@ -45,7 +45,7 @@ Section definitions.
Global Instance gmultiset_dom : Dom (gmultiset A) (gset A) := λ X,
let (X) := X in dom _ X.
End definitions.
End definitions.
Typeclasses Opaque gmultiset_elem_of gmultiset_subseteq.
Typeclasses Opaque gmultiset_elements gmultiset_size gmultiset_empty.
......@@ -66,6 +66,8 @@ Proof.
Global Instance gmultiset_leibniz : LeibnizEquiv (gmultiset A).
Proof. intros X Y. by rewrite gmultiset_eq. Qed.
Global Instance gmultiset_equivalence : Equivalence (@{gmultiset A}).
Proof. constructor; repeat intro; naive_solver. Qed.
(* Multiplicity *)
Lemma multiplicity_empty x : multiplicity x = 0.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment