Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tej Chajed
stdpp
Commits
51e86b96
Commit
51e86b96
authored
Jul 27, 2016
by
Robbert Krebbers
Browse files
Relate subseteq on collections to the extension order.
parent
2af4573e
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/collections.v
View file @
51e86b96
...
...
@@ -645,6 +645,11 @@ Section collection.
intros
?
x
;
split
;
rewrite
!
elem_of_union
,
elem_of_difference
;
[|
intuition
].
destruct
(
decide
(
x
∈
X
))
;
intuition
.
Qed
.
Lemma
subseteq_disjoint_union
X
Y
:
X
⊆
Y
↔
∃
Z
,
Y
≡
X
∪
Z
∧
X
⊥
Z
.
Proof
.
split
;
[|
set_solver
].
exists
(
Y
∖
X
)
;
split
;
[
auto
using
union_difference
|
set_solver
].
Qed
.
Lemma
non_empty_difference
X
Y
:
X
⊂
Y
→
Y
∖
X
≢
∅
.
Proof
.
intros
[
HXY1
HXY2
]
Hdiff
.
destruct
HXY2
.
set_solver
.
Qed
.
Lemma
empty_difference_subseteq
X
Y
:
X
∖
Y
≡
∅
→
X
⊆
Y
.
...
...
@@ -657,6 +662,8 @@ Section collection.
Proof
.
unfold_leibniz
.
apply
non_empty_difference
.
Qed
.
Lemma
empty_difference_subseteq_L
X
Y
:
X
∖
Y
=
∅
→
X
⊆
Y
.
Proof
.
unfold_leibniz
.
apply
empty_difference_subseteq
.
Qed
.
Lemma
subseteq_disjoint_union_L
X
Y
:
X
⊆
Y
↔
∃
Z
,
Y
=
X
∪
Z
∧
X
⊥
Z
.
Proof
.
unfold_leibniz
.
apply
subseteq_disjoint_union
.
Qed
.
End
dec
.
End
collection
.
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment