diff --git a/theories/collections.v b/theories/collections.v index 6f4e526e3127119b3688ce7cc10081640443a48e..3a49b8deb7e39928a11456bf7098b49468c1c2e0 100644 --- a/theories/collections.v +++ b/theories/collections.v @@ -390,7 +390,7 @@ Section simple_collection. split. - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|]. setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver. - - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |]. + - intros [X [Hx]]. induction Hx; simpl; [by apply elem_of_union_l |]. intros. apply elem_of_union_r; auto. Qed. diff --git a/theories/list.v b/theories/list.v index 59b7bda9e163ca67ae0ac65fc67e7cb712b78b87..ab08c510c7a112db57efdde80a6da8940361405d 100644 --- a/theories/list.v +++ b/theories/list.v @@ -926,7 +926,7 @@ Proof. by destruct n. Qed. Lemma drop_length l n : length (drop n l) = length l - n. Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed. Lemma drop_ge l n : length l ≤ n → drop n l = []. -Proof. revert n. induction l; intros [|??]; simpl in *; auto with lia. Qed. +Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed. Lemma drop_all l : drop (length l) l = []. Proof. by apply drop_ge. Qed. Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l. @@ -2828,7 +2828,7 @@ Section fmap. (∀ x, f x = y) → f <$> l = replicate (length l) y. Proof. intros; induction l; f_equal/=; auto. Qed. Lemma list_lookup_fmap l i : (f <$> l) !! i = f <$> (l !! i). - Proof. revert i. induction l; by intros [|]. Qed. + Proof. revert i. induction l; intros [|n]; by try revert n. Qed. Lemma list_lookup_fmap_inv l i x : (f <$> l) !! i = Some x → ∃ y, x = f y ∧ l !! i = Some y. Proof. diff --git a/theories/vector.v b/theories/vector.v index d2e6bebd94dac2211e151a9097ddc198e3839555..5e18c1565c9ea0e0a60d68ce475dd4047a74d402 100644 --- a/theories/vector.v +++ b/theories/vector.v @@ -69,12 +69,13 @@ Ltac inv_fin i := revert dependent i; match goal with |- ∀ i, @?P i => apply (fin_S_inv P) end end. -Instance: Inj (=) (=) (@FS n). +Instance FS_inj: Inj (=) (=) (@FS n). Proof. intros n i j. apply Fin.FS_inj. Qed. -Instance: Inj (=) (=) (@fin_to_nat n). +Instance fin_to_nat_inj : Inj (=) (=) (@fin_to_nat n). Proof. intros n i. induction i; intros j; inv_fin j; intros; f_equal/=; auto with lia. Qed. + Lemma fin_to_nat_lt {n} (i : fin n) : fin_to_nat i < n. Proof. induction i; simpl; lia. Qed. Lemma fin_to_of_nat n m (H : n < m) : fin_to_nat (Fin.of_nat_lt H) = n. @@ -82,6 +83,31 @@ Proof. revert m H. induction n; intros [|?]; simpl; auto; intros; exfalso; lia. Qed. +Fixpoint fin_plus_inv {n1 n2} : ∀ (P : fin (n1 + n2) → Type) + (H1 : ∀ i1 : fin n1, P (Fin.L n2 i1)) + (H2 : ∀ i2, P (Fin.R n1 i2)) (i : fin (n1 + n2)), P i := + match n1 with + | 0 => λ P H1 H2 i, H2 i + | S n => λ P H1 H2, fin_S_inv P (H1 0%fin) (fin_plus_inv _ (λ i, H1 (FS i)) H2) + end. + +Lemma fin_plus_inv_L {n1 n2} (P : fin (n1 + n2) → Type) + (H1: ∀ i1 : fin n1, P (Fin.L _ i1)) (H2: ∀ i2, P (Fin.R _ i2)) (i: fin n1) : + fin_plus_inv P H1 H2 (Fin.L n2 i) = H1 i. +Proof. + revert P H1 H2 i. + induction n1 as [|n1 IH]; intros P H1 H2 i; inv_fin i; simpl; auto. + intros i. apply (IH (λ i, P (FS i))). +Qed. + +Lemma fin_plus_inv_R {n1 n2} (P : fin (n1 + n2) → Type) + (H1: ∀ i1 : fin n1, P (Fin.L _ i1)) (H2: ∀ i2, P (Fin.R _ i2)) (i: fin n2) : + fin_plus_inv P H1 H2 (Fin.R n1 i) = H2 i. +Proof. + revert P H1 H2 i; induction n1 as [|n1 IH]; intros P H1 H2 i; simpl; auto. + apply (IH (λ i, P (FS i))). +Qed. + (** * Vectors *) (** The type [vec n] represents lists of consisting of exactly [n] elements. Whereas the standard library declares exactly the same notations for vectors as