Commit 0af80759 authored by Ralf Jung's avatar Ralf Jung
Browse files

Turn out Coq 8.5 already comes with a module to get lia without axioms: Lia

parent a7c55441
(** This file is a hack that lets us use Psatz without importing all sorts of
axioms about real numbers. It has been created by copying the file
Psatz.v from the Coq distribution, removing everything defined after the lia
tactic, and removing the two lines importing RMicromega and Rdefinitions.
The original license header follows. *)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
From Coq Require Import ZMicromega.
From Coq Require Import QMicromega.
From Coq Require Import QArith.
From Coq Require Import ZArith.
From Coq Require Import RingMicromega.
From Coq Require Import VarMap.
From Coq Require Tauto.
Declare ML Module "micromega_plugin".
Ltac preprocess :=
zify ; unfold Z.succ in * ; unfold Z.pred in *.
Ltac lia :=
xlia ;
abstract (
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_cast_no_check (eq_refl true)).
......@@ -3,7 +3,7 @@
(** This file collects general purpose tactics that are used throughout
the development. *)
From Coq Require Import Omega.
From stdpp Require Export psatz_axiomfree.
From Coq Require Export Lia.
From stdpp Require Export decidable.
Lemma f_equal_dep {A B} (f g : x : A, B x) x : f = g f x = g x.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment