collections.v 32.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
2
3
4
5
(* This file is distributed under the terms of the BSD license. *)
(** This file collects definitions and theorems on collections. Most
importantly, it implements some tactics to automatically solve goals involving
collections. *)
6
From stdpp Require Export base tactics orders.
7

Robbert Krebbers's avatar
Robbert Krebbers committed
8
9
Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y,
   x, x  X  x  Y  False.
10
11
Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y,
   x, x  X  x  Y.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
Typeclasses Opaque collection_disjoint collection_subseteq.
13

14
(** * Basic theorems *)
15
16
Section simple_collection.
  Context `{SimpleCollection A C}.
17
18
  Implicit Types x y : A.
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
19

20
  Lemma elem_of_empty x : x    False.
21
  Proof. split. apply not_elem_of_empty. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
22
23
24
25
  Lemma elem_of_union_l x X Y : x  X  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
  Lemma elem_of_union_r x X Y : x  Y  x  X  Y.
  Proof. intros. apply elem_of_union. auto. Qed.
26
27
28
  Global Instance: EmptySpec C.
  Proof. firstorder auto. Qed.
  Global Instance: JoinSemiLattice C.
29
  Proof. firstorder auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
30
31
  Global Instance: AntiSymm () (@collection_subseteq A C _).
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
32
  Lemma elem_of_subseteq X Y : X  Y   x, x  X  x  Y.
33
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
34
35
  Lemma elem_of_equiv X Y : X  Y   x, x  X  x  Y.
  Proof. firstorder. Qed.
36
37
  Lemma elem_of_equiv_alt X Y :
    X  Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
Robbert Krebbers's avatar
Robbert Krebbers committed
38
  Proof. firstorder. Qed.
39
40
  Lemma elem_of_equiv_empty X : X     x, x  X.
  Proof. firstorder. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
43
  Lemma elem_of_disjoint X Y : X  Y   x, x  X  x  Y  False.
  Proof. done. Qed.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  Global Instance disjoint_sym : Symmetric (@disjoint C _).
  Proof. intros ??. rewrite !elem_of_disjoint; naive_solver. Qed.
  Lemma disjoint_empty_l Y :   Y.
  Proof. rewrite elem_of_disjoint; intros x; by rewrite elem_of_empty. Qed.
  Lemma disjoint_empty_r X : X  .
  Proof. rewrite (symmetry_iff _); apply disjoint_empty_l. Qed.
  Lemma disjoint_singleton_l x Y : {[ x ]}  Y  x  Y.
  Proof.
    rewrite elem_of_disjoint; setoid_rewrite elem_of_singleton; naive_solver.
  Qed.
  Lemma disjoint_singleton_r y X : X  {[ y ]}  y  X.
  Proof. rewrite (symmetry_iff ()). apply disjoint_singleton_l. Qed.
  Lemma disjoint_union_l X1 X2 Y : X1  X2  Y  X1  Y  X2  Y.
  Proof.
    rewrite !elem_of_disjoint; setoid_rewrite elem_of_union; naive_solver.
  Qed.
  Lemma disjoint_union_r X Y1 Y2 : X  Y1  Y2  X  Y1  X  Y2.
  Proof. rewrite !(symmetry_iff () X). apply disjoint_union_l. Qed.

63
64
65
66
67
68
  Lemma collection_positive_l X Y : X  Y    X  .
  Proof.
    rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver.
  Qed.
  Lemma collection_positive_l_alt X Y : X    X  Y  .
  Proof. eauto using collection_positive_l. Qed.
69
70
71
72
  Lemma elem_of_singleton_1 x y : x  {[y]}  x = y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma elem_of_singleton_2 x y : x = y  x  {[y]}.
  Proof. by rewrite elem_of_singleton. Qed.
73
74
75
  Lemma elem_of_subseteq_singleton x X : x  X  {[ x ]}  X.
  Proof.
    split.
76
77
    - intros ??. rewrite elem_of_singleton. by intros ->.
    - intros Ex. by apply (Ex x), elem_of_singleton.
78
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
79

80
  Global Instance singleton_proper : Proper ((=) ==> ()) (singleton (B:=C)).
81
  Proof. by repeat intro; subst. Qed.
82
  Global Instance elem_of_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
83
    Proper ((=) ==> () ==> iff) (@elem_of A C _) | 5.
84
  Proof. intros ???; subst. firstorder. Qed.
Ralf Jung's avatar
Ralf Jung committed
85
  Global Instance disjoint_proper: Proper (() ==> () ==> iff) (@disjoint C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed.
87
  Lemma elem_of_union_list Xs x : x   Xs   X, X  Xs  x  X.
88
89
  Proof.
    split.
90
    - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|].
91
      setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver.
92
    - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |].
93
      intros. apply elem_of_union_r; auto.
94
  Qed.
95
  Lemma non_empty_singleton x : ({[ x ]} : C)  .
96
97
98
99
100
101
  Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed.
  Lemma not_elem_of_singleton x y : x  {[ y ]}  x  y.
  Proof. by rewrite elem_of_singleton. Qed.
  Lemma not_elem_of_union x X Y : x  X  Y  x  X  x  Y.
  Proof. rewrite elem_of_union. tauto. Qed.

102
103
104
105
106
107
108
109
110
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma elem_of_equiv_L X Y : X = Y   x, x  X  x  Y.
    Proof. unfold_leibniz. apply elem_of_equiv. Qed.
    Lemma elem_of_equiv_alt_L X Y :
      X = Y  ( x, x  X  x  Y)  ( x, x  Y  x  X).
    Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed.
    Lemma elem_of_equiv_empty_L X : X =    x, x  X.
    Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed.
111
112
113
114
    Lemma collection_positive_l_L X Y : X  Y =   X = .
    Proof. unfold_leibniz. apply collection_positive_l. Qed.
    Lemma collection_positive_l_alt_L X Y : X    X  Y  .
    Proof. unfold_leibniz. apply collection_positive_l_alt. Qed.
115
116
117
118
119
120
121
122
123
124
125
126
    Lemma non_empty_singleton_L x : {[ x ]}  .
    Proof. unfold_leibniz. apply non_empty_singleton. Qed.
  End leibniz.

  Section dec.
    Context `{ X Y : C, Decision (X  Y)}.
    Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x  X) | 100.
    Proof.
      refine (cast_if (decide_rel () {[ x ]} X));
        by rewrite elem_of_subseteq_singleton.
    Defined.
  End dec.
127
128
End simple_collection.

129
130
131
132
133
134
135
136
137
138
139
140
141
142
(** * Tactics *)
(** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)],
[(<$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions
involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False].

This transformation is implemented using type classes instead of [rewrite]ing
to ensure that we traverse each term at most once. *)
Class SetUnfold (P Q : Prop) := { set_unfold : P  Q }.
Arguments set_unfold _ _ {_}.
Hint Mode SetUnfold + - : typeclass_instances.

Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }.
Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances.

143
Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed.
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
Definition set_unfold_1 `{SetUnfold P Q} : P  Q := proj1 (set_unfold P Q).
Definition set_unfold_2 `{SetUnfold P Q} : Q  P := proj2 (set_unfold P Q).

Lemma set_unfold_impl P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_and P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_or P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_iff P Q P' Q' :
  SetUnfold P P'  SetUnfold Q Q'  SetUnfold (P  Q) (P'  Q').
Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed.
Lemma set_unfold_not P P' : SetUnfold P P'  SetUnfold (¬P) (¬P').
Proof. constructor. by rewrite (set_unfold P P'). Qed.
Lemma set_unfold_forall {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.
Lemma set_unfold_exist {A} (P P' : A  Prop) :
  ( x, SetUnfold (P x) (P' x))  SetUnfold ( x, P x) ( x, P' x).
Proof. constructor. naive_solver. Qed.

(* Avoid too eager application of the above instances (and thus too eager
unfolding of type class transparent definitions). *)
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_impl : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_and : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_or : typeclass_instances.
Hint Extern 0 (SetUnfold (_  _) _) =>
  class_apply set_unfold_iff : typeclass_instances.
Hint Extern 0 (SetUnfold (¬ _) _) =>
  class_apply set_unfold_not : typeclass_instances.
Hint Extern 1 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_forall : typeclass_instances.
Hint Extern 0 (SetUnfold ( _, _) _) =>
  class_apply set_unfold_exist : typeclass_instances.

Section set_unfold_simple.
  Context `{SimpleCollection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_empty x : SetUnfold (x  ) False.
  Proof. constructor; apply elem_of_empty. Qed.
  Global Instance set_unfold_singleton x y : SetUnfold (x  {[ y ]}) (x = y).
  Proof. constructor; apply elem_of_singleton. Qed.
  Global Instance set_unfold_union x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_union, (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_equiv_same X : SetUnfold (X  X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (  X) ( x, ¬P x) | 5.
  Proof.
    intros ?; constructor.
    rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X  ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed.
  Global Instance set_unfold_equiv (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed.
  Global Instance set_unfold_subseteq (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x).
  Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed.
  Global Instance set_unfold_subset (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) (( x, P x  Q x)  ¬∀ x, P x  Q x).
  Proof.
    constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv.
    repeat f_equiv; naive_solver.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
227
228
229
  Global Instance set_unfold_disjoint (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X  Y) ( x, P x  Q x  False).
  Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed.
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

  Context `{!LeibnizEquiv C}.
  Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1.
  Proof. done. Qed.
  Global Instance set_unfold_equiv_empty_l_L X (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold ( = X) ( x, ¬P x) | 5.
  Proof.
    constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver.
  Qed.
  Global Instance set_unfold_equiv_empty_r_L (P : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  SetUnfold (X = ) ( x, ¬P x) | 5.
  Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed.
  Global Instance set_unfold_equiv_L (P Q : A  Prop) :
    ( x, SetUnfold (x  X) (P x))  ( x, SetUnfold (x  Y) (Q x)) 
    SetUnfold (X = Y) ( x, P x  Q x) | 10.
  Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed.
End set_unfold_simple.

Section set_unfold.
  Context `{Collection A C}.
  Implicit Types x y : A.
  Implicit Types X Y : C.

  Global Instance set_unfold_intersection x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_intersection,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
  Global Instance set_unfold_difference x X Y P Q :
    SetUnfold (x  X) P  SetUnfold (x  Y) Q  SetUnfold (x  X  Y) (P  ¬Q).
  Proof.
    intros ??; constructor. by rewrite elem_of_difference,
      (set_unfold (x  X) P), (set_unfold (x  Y) Q).
  Qed.
End set_unfold.

Section set_unfold_monad.
  Context `{CollectionMonad M} {A : Type}.
  Implicit Types x y : A.

  Global Instance set_unfold_ret x y : SetUnfold (x  mret y) (x = y).
  Proof. constructor; apply elem_of_ret. Qed.
  Global Instance set_unfold_bind {B} (f : A  M B) X (P Q : A  Prop) :
    ( y, SetUnfold (y  X) (P y))  ( y, SetUnfold (x  f y) (Q y)) 
    SetUnfold (x  X = f) ( y, Q y  P y).
  Proof. constructor. rewrite elem_of_bind; naive_solver. Qed.
  Global Instance set_unfold_fmap {B} (f : A  B) X (P : A  Prop) :
    ( y, SetUnfold (y  X) (P y)) 
    SetUnfold (x  f <$> X) ( y, x = f y  P y).
  Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed.
  Global Instance set_unfold_join (X : M (M A)) (P : M A  Prop) :
    ( Y, SetUnfold (Y  X) (P Y))  SetUnfold (x  mjoin X) ( Y, x  Y  P Y).
  Proof. constructor. rewrite elem_of_join; naive_solver. Qed.
End set_unfold_monad.

Ltac set_unfold :=
  let rec unfold_hyps :=
    try match goal with
    | H : _ |- _ =>
       apply set_unfold_1 in H; revert H;
       first [unfold_hyps; intros H | intros H; fail 1]
    end in
  apply set_unfold_2; unfold_hyps; csimpl in *.

(** Since [firstorder] fails or loops on very small goals generated by
[set_solver] already. We use the [naive_solver] tactic as a substitute.
This tactic either fails or proves the goal. *)
Tactic Notation "set_solver" "by" tactic3(tac) :=
299
  try fast_done;
300
301
302
303
304
305
306
307
308
309
310
311
312
  intros; setoid_subst;
  set_unfold;
  intros; setoid_subst;
  try match goal with |- _  _ => apply dec_stable end;
  naive_solver tac.
Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) :=
  clear Hs; set_solver by tac.
Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) :=
  clear -Hs; set_solver by tac.
Tactic Notation "set_solver" := set_solver by idtac.
Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver.
Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver.

313
314
315
316
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.
Hint Extern 1000 (_  _) => set_solver : set_solver.

317
318
319
(** * Conversion of option and list *)
Definition of_option `{Singleton A C, Empty C} (mx : option A) : C :=
  match mx with None =>  | Some x => {[ x ]} end.
320
321
Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C :=
  match l with [] =>  | x :: l => {[ x ]}  of_list l end.
322

323
324
Section of_option_list.
  Context `{SimpleCollection A C}.
325
326
  Lemma elem_of_of_option (x : A) mx: x  of_option mx  mx = Some x.
  Proof. destruct mx; set_solver. Qed.
327
328
329
  Lemma elem_of_of_list (x : A) l : x  of_list l  x  l.
  Proof.
    split.
330
    - induction l; simpl; [by rewrite elem_of_empty|].
Robbert Krebbers's avatar
Robbert Krebbers committed
331
      rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto.
332
    - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto.
333
  Qed.
334
335
336
  Global Instance set_unfold_of_option (mx : option A) x :
    SetUnfold (x  of_option mx) (mx = Some x).
  Proof. constructor; apply elem_of_of_option. Qed.
337
338
339
  Global Instance set_unfold_of_list (l : list A) x P :
    SetUnfold (x  l) P  SetUnfold (x  of_list l) P.
  Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x  l) P). Qed.
340
End of_option_list.
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
Section list_unfold.
  Context {A : Type}.
  Implicit Types x : A.
  Implicit Types l : list A.

  Global Instance set_unfold_nil x : SetUnfold (x  []) False.
  Proof. constructor; apply elem_of_nil. Qed.
  Global Instance set_unfold_cons x y l P :
    SetUnfold (x  l) P  SetUnfold (x  y :: l) (x = y  P).
  Proof. constructor. by rewrite elem_of_cons, (set_unfold (x  l) P). Qed.
  Global Instance set_unfold_app x l k P Q :
    SetUnfold (x  l) P  SetUnfold (x  k) Q  SetUnfold (x  l ++ k) (P  Q).
  Proof.
    intros ??; constructor.
    by rewrite elem_of_app, (set_unfold (x  l) P), (set_unfold (x  k) Q).
  Qed.
358
359
360
361
  Global Instance set_unfold_included l k (P Q : A  Prop) :
    ( x, SetUnfold (x  l) (P x))  ( x, SetUnfold (x  k) (Q x)) 
    SetUnfold (l `included` k) ( x, P x  Q x).
  Proof. by constructor; unfold included; set_unfold. Qed.
362
363
End list_unfold.

364
(** * Guard *)
365
366
Global Instance collection_guard `{CollectionMonad M} : MGuard M :=
  λ P dec A x, match dec with left H => x H | _ =>  end.
367
368
369
370
371
372
373
374
375

Section collection_monad_base.
  Context `{CollectionMonad M}.
  Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) :
    x  guard P; X  P  x  X.
  Proof.
    unfold mguard, collection_guard; simpl; case_match;
      rewrite ?elem_of_empty; naive_solver.
  Qed.
376
377
378
  Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) :
    P  x  X  x  guard P; X.
  Proof. by rewrite elem_of_guard. Qed.
379
380
381
382
383
  Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X    ¬P  X  .
  Proof.
    rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard.
    destruct (decide P); naive_solver.
  Qed.
384
385
386
  Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q :
    SetUnfold (x  X) Q  SetUnfold (x  guard P; X) (P  Q).
  Proof. constructor. by rewrite elem_of_guard, (set_unfold (x  X) Q). Qed.
387
388
  Lemma bind_empty {A B} (f : A  M B) X :
    X = f    X     x, x  X  f x  .
389
  Proof. set_solver. Qed.
390
End collection_monad_base.
391

392
(** * More theorems *)
Robbert Krebbers's avatar
Robbert Krebbers committed
393
394
Section collection.
  Context `{Collection A C}.
395
  Implicit Types X Y : C.
Robbert Krebbers's avatar
Robbert Krebbers committed
396

397
  Global Instance: Lattice C.
398
  Proof. split. apply _. firstorder auto. set_solver. Qed.
399
400
  Global Instance difference_proper :
     Proper (() ==> () ==> ()) (@difference C _).
Robbert Krebbers's avatar
Robbert Krebbers committed
401
402
403
404
  Proof.
    intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x.
    by rewrite !elem_of_difference, HX, HY.
  Qed.
405
  Lemma non_empty_inhabited x X : x  X  X  .
406
  Proof. set_solver. Qed.
407
  Lemma intersection_singletons x : ({[x]} : C)  {[x]}  {[x]}.
408
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409
  Lemma difference_twice X Y : (X  Y)  Y  X  Y.
410
  Proof. set_solver. Qed.
411
  Lemma subseteq_empty_difference X Y : X  Y  X  Y  .
412
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
413
  Lemma difference_diag X : X  X  .
414
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
415
  Lemma difference_union_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
416
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
  Lemma difference_union_distr_r X Y Z : Z  (X  Y)  (Z  X)  (Z  Y).
418
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
419
  Lemma difference_intersection_distr_l X Y Z : (X  Y)  Z  X  Z  Y  Z.
420
  Proof. set_solver. Qed.
421
  Lemma difference_disjoint X Y : X  Y  X  Y  X.
422
  Proof. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
423

424
425
426
427
428
429
  Section leibniz.
    Context `{!LeibnizEquiv C}.
    Lemma intersection_singletons_L x : {[x]}  {[x]} = {[x]}.
    Proof. unfold_leibniz. apply intersection_singletons. Qed.
    Lemma difference_twice_L X Y : (X  Y)  Y = X  Y.
    Proof. unfold_leibniz. apply difference_twice. Qed.
430
431
    Lemma subseteq_empty_difference_L X Y : X  Y  X  Y = .
    Proof. unfold_leibniz. apply subseteq_empty_difference. Qed.
432
433
434
435
    Lemma difference_diag_L X : X  X = .
    Proof. unfold_leibniz. apply difference_diag. Qed.
    Lemma difference_union_distr_l_L X Y Z : (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_union_distr_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
436
437
    Lemma difference_union_distr_r_L X Y Z : Z  (X  Y) = (Z  X)  (Z  Y).
    Proof. unfold_leibniz. apply difference_union_distr_r. Qed.
438
439
440
    Lemma difference_intersection_distr_l_L X Y Z :
      (X  Y)  Z = X  Z  Y  Z.
    Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed.
441
442
    Lemma difference_disjoint_L X Y : X  Y  X  Y = X.
    Proof. unfold_leibniz. apply difference_disjoint. Qed.
443
444
445
  End leibniz.

  Section dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
446
    Context `{ (x : A) (X : C), Decision (x  X)}.
447
    Lemma not_elem_of_intersection x X Y : x  X  Y  x  X  x  Y.
448
    Proof. rewrite elem_of_intersection. destruct (decide (x  X)); tauto. Qed.
449
    Lemma not_elem_of_difference x X Y : x  X  Y  x  X  x  Y.
450
    Proof. rewrite elem_of_difference. destruct (decide (x  Y)); tauto. Qed.
451
452
    Lemma union_difference X Y : X  Y  Y  X  Y  X.
    Proof.
453
454
      split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition].
      destruct (decide (x  X)); intuition.
455
456
    Qed.
    Lemma non_empty_difference X Y : X  Y  Y  X  .
457
    Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed.
458
    Lemma empty_difference_subseteq X Y : X  Y    X  Y.
459
    Proof. set_solver. Qed.
460
461
462
463
464
    Context `{!LeibnizEquiv C}.
    Lemma union_difference_L X Y : X  Y  Y = X  Y  X.
    Proof. unfold_leibniz. apply union_difference. Qed.
    Lemma non_empty_difference_L X Y : X  Y  Y  X  .
    Proof. unfold_leibniz. apply non_empty_difference. Qed.
465
466
    Lemma empty_difference_subseteq_L X Y : X  Y =   X  Y.
    Proof. unfold_leibniz. apply empty_difference_subseteq. Qed.
467
468
469
  End dec.
End collection.

470
(** * Sets without duplicates up to an equivalence *)
471
Section NoDup.
472
  Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}.
Robbert Krebbers's avatar
Robbert Krebbers committed
473
474

  Definition elem_of_upto (x : A) (X : B) :=  y, y  X  R x y.
475
  Definition set_NoDup (X : B) :=  x y, x  X  y  X  R x y  x = y.
Robbert Krebbers's avatar
Robbert Krebbers committed
476
477

  Global Instance: Proper (() ==> iff) (elem_of_upto x).
Robbert Krebbers's avatar
Robbert Krebbers committed
478
  Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
479
480
481
  Global Instance: Proper (R ==> () ==> iff) elem_of_upto.
  Proof.
    intros ?? E1 ?? E2. split; intros [z [??]]; exists z.
482
483
    - rewrite <-E1, <-E2; intuition.
    - rewrite E1, E2; intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
484
  Qed.
485
  Global Instance: Proper (() ==> iff) set_NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
486
487
488
  Proof. firstorder. Qed.

  Lemma elem_of_upto_elem_of x X : x  X  elem_of_upto x X.
489
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
490
  Lemma elem_of_upto_empty x : ¬elem_of_upto x .
491
  Proof. unfold elem_of_upto. set_solver. Qed.
492
  Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]}  R x y.
493
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
494

495
496
  Lemma elem_of_upto_union X Y x :
    elem_of_upto x (X  Y)  elem_of_upto x X  elem_of_upto x Y.
497
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498
  Lemma not_elem_of_upto x X : ¬elem_of_upto x X   y, y  X  ¬R x y.
499
  Proof. unfold elem_of_upto. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
500

501
  Lemma set_NoDup_empty: set_NoDup .
502
  Proof. unfold set_NoDup. set_solver. Qed.
503
504
  Lemma set_NoDup_add x X :
    ¬elem_of_upto x X  set_NoDup X  set_NoDup ({[ x ]}  X).
505
  Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed.
506
507
  Lemma set_NoDup_inv_add x X :
    x  X  set_NoDup ({[ x ]}  X)  ¬elem_of_upto x X.
508
509
  Proof.
    intros Hin Hnodup [y [??]].
510
    rewrite (Hnodup x y) in Hin; set_solver.
511
  Qed.
512
  Lemma set_NoDup_inv_union_l X Y : set_NoDup (X  Y)  set_NoDup X.
513
  Proof. unfold set_NoDup. set_solver. Qed.
514
  Lemma set_NoDup_inv_union_r X Y : set_NoDup (X  Y)  set_NoDup Y.
515
  Proof. unfold set_NoDup. set_solver. Qed.
516
End NoDup.
Robbert Krebbers's avatar
Robbert Krebbers committed
517

518
(** * Quantifiers *)
Robbert Krebbers's avatar
Robbert Krebbers committed
519
Section quantifiers.
520
  Context `{SimpleCollection A B} (P : A  Prop).
Robbert Krebbers's avatar
Robbert Krebbers committed
521

522
523
524
525
  Definition set_Forall X :=  x, x  X  P x.
  Definition set_Exists X :=  x, x  X  P x.

  Lemma set_Forall_empty : set_Forall .
526
  Proof. unfold set_Forall. set_solver. Qed.
527
  Lemma set_Forall_singleton x : set_Forall {[ x ]}  P x.
528
  Proof. unfold set_Forall. set_solver. Qed.
529
  Lemma set_Forall_union X Y : set_Forall X  set_Forall Y  set_Forall (X  Y).
530
  Proof. unfold set_Forall. set_solver. Qed.
531
  Lemma set_Forall_union_inv_1 X Y : set_Forall (X  Y)  set_Forall X.
532
  Proof. unfold set_Forall. set_solver. Qed.
533
  Lemma set_Forall_union_inv_2 X Y : set_Forall (X  Y)  set_Forall Y.
534
  Proof. unfold set_Forall. set_solver. Qed.
535
536

  Lemma set_Exists_empty : ¬set_Exists .
537
  Proof. unfold set_Exists. set_solver. Qed.
538
  Lemma set_Exists_singleton x : set_Exists {[ x ]}  P x.
539
  Proof. unfold set_Exists. set_solver. Qed.
540
  Lemma set_Exists_union_1 X Y : set_Exists X  set_Exists (X  Y).
541
  Proof. unfold set_Exists. set_solver. Qed.
542
  Lemma set_Exists_union_2 X Y : set_Exists Y  set_Exists (X  Y).
543
  Proof. unfold set_Exists. set_solver. Qed.
544
545
  Lemma set_Exists_union_inv X Y :
    set_Exists (X  Y)  set_Exists X  set_Exists Y.
546
  Proof. unfold set_Exists. set_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
547
548
End quantifiers.

549
Section more_quantifiers.
550
  Context `{SimpleCollection A B}.
551

552
553
554
555
556
557
  Lemma set_Forall_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Forall P X  set_Forall Q X.
  Proof. unfold set_Forall. naive_solver. Qed.
  Lemma set_Exists_weaken (P Q : A  Prop) (Hweaken :  x, P x  Q x) X :
    set_Exists P X  set_Exists Q X.
  Proof. unfold set_Exists. naive_solver. Qed.
558
559
End more_quantifiers.

560
561
562
(** * Fresh elements *)
(** We collect some properties on the [fresh] operation. In particular we
generalize [fresh] to generate lists of fresh elements. *)
563
564
565
566
567
568
569
570
571
572
Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C}
    (n : nat) (X : C) : list A :=
  match n with
  | 0 => []
  | S n => let x := fresh X in x :: fresh_list n ({[ x ]}  X)
  end.
Inductive Forall_fresh `{ElemOf A C} (X : C) : list A  Prop :=
  | Forall_fresh_nil : Forall_fresh X []
  | Forall_fresh_cons x xs :
     x  xs  x  X  Forall_fresh X xs  Forall_fresh X (x :: xs).
573

574
575
Section fresh.
  Context `{FreshSpec A C}.
576
  Implicit Types X Y : C.
577

578
  Global Instance fresh_proper: Proper (() ==> (=)) (fresh (C:=C)).
579
  Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed.
580
581
  Global Instance fresh_list_proper:
    Proper ((=) ==> () ==> (=)) (fresh_list (C:=C)).
582
  Proof.
583
    intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|].
584
    apply IH. by rewrite E.
585
  Qed.
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

  Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs  NoDup xs.
  Proof. induction 1; by constructor. Qed.
  Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs  x  xs  x  X.
  Proof.
    intros HX; revert x; rewrite <-Forall_forall.
    by induction HX; constructor.
  Qed.
  Lemma Forall_fresh_alt X xs :
    Forall_fresh X xs  NoDup xs   x, x  xs  x  X.
  Proof.
    split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of.
    rewrite <-Forall_forall.
    intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
601
602
  Lemma Forall_fresh_subseteq X Y xs :
    Forall_fresh X xs  Y  X  Forall_fresh Y xs.
603
  Proof. rewrite !Forall_fresh_alt; set_solver. Qed.
604

605
606
  Lemma fresh_list_length n X : length (fresh_list n X) = n.
  Proof. revert X. induction n; simpl; auto. Qed.
607
  Lemma fresh_list_is_fresh n X x : x  fresh_list n X  x  X.
608
  Proof.
609
    revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|].
610
    rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|].
611
    apply IH in Hin; set_solver.
612
  Qed.
613
  Lemma NoDup_fresh_list n X : NoDup (fresh_list n X).
614
  Proof.
615
    revert X. induction n; simpl; constructor; auto.
616
    intros Hin; apply fresh_list_is_fresh in Hin; set_solver.
617
618
619
620
  Qed.
  Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X).
  Proof.
    rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh.
621
622
  Qed.
End fresh.
623

624
(** * Properties of implementations of collections that form a monad *)
625
626
627
Section collection_monad.
  Context `{CollectionMonad M}.

628
629
  Global Instance collection_fmap_mono {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
630
  Proof. intros f g ? X Y ?; set_solver by eauto. Qed.
631
632
  Global Instance collection_fmap_proper {A B} :
    Proper (pointwise_relation _ (=) ==> () ==> ()) (@fmap M _ A B).
633
  Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed.
634
635
  Global Instance collection_bind_mono {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
636
  Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed.
637
638
  Global Instance collection_bind_proper {A B} :
    Proper (((=) ==> ()) ==> () ==> ()) (@mbind M _ A B).
639
  Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed.
640
641
  Global Instance collection_join_mono {A} :
    Proper (() ==> ()) (@mjoin M _ A).
642
  Proof. intros X Y ?; set_solver. Qed.
643
644
  Global Instance collection_join_proper {A} :
    Proper (() ==> ()) (@mjoin M _ A).
645
  Proof. intros X Y [??]; split; set_solver. Qed.
646

647
  Lemma collection_bind_singleton {A B} (f : A  M B) x : {[ x ]} = f  f x.
648
  Proof. set_solver. Qed.
649
  Lemma collection_guard_True {A} `{Decision P} (X : M A) : P  guard P; X  X.
650
  Proof. set_solver. Qed.
651
  Lemma collection_fmap_compose {A B C} (f : A  B) (g : B  C) (X : M A) :
652
    g  f <$> X  g <$> (f <$> X).
653
  Proof. set_solver. Qed.
654
655
  Lemma elem_of_fmap_1 {A B} (f : A  B) (X : M A) (y : B) :
    y  f <$> X   x, y = f x  x  X.
656
  Proof. set_solver. Qed.
657
658
  Lemma elem_of_fmap_2 {A B} (f : A  B) (X : M A) (x : A) :
    x  X  f x  f <$> X.
659
  Proof. set_solver. Qed.
660
661
  Lemma elem_of_fmap_2_alt {A B} (f : A  B) (X : M A) (x : A) (y : B) :
    x  X  y = f x  y  f <$> X.
662
  Proof. set_solver. Qed.
663
664
665
666
667

  Lemma elem_of_mapM {A B} (f : A  M B) l k :
    l  mapM f k  Forall2 (λ x y, x  f y) l k.
  Proof.
    split.
668
    - revert l. induction k; set_solver by eauto.
669
    - induction 1; set_solver.
670
  Qed.
671
  Lemma collection_mapM_length {A B} (f : A  M B) l k :
672
    l  mapM f k  length l = length k.
673
  Proof. revert l; induction k; set_solver by eauto. Qed.
674
  Lemma elem_of_mapM_fmap {A B} (f : A  B) (g : B  M A) l k :
675
    Forall (λ x,  y, y  g x  f y = x) l  k  mapM g l  fmap f k = l.
676
  Proof. intros Hl. revert k. induction Hl; set_solver. Qed.
677
  Lemma elem_of_mapM_Forall {A B} (f : A  M B) (P : B  Prop) l k :
678
    l  mapM f k  Forall (λ x,  y, y  f x  P y) k  Forall P l.
Robbert Krebbers's avatar
Robbert Krebbers committed
679
  Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed.
680
681
  Lemma elem_of_mapM_Forall2_l {A B C} (f : A  M B) (P: B  C  Prop) l1 l2 k :
    l1  mapM f k  Forall2 (λ x y,  z, z  f x  P z y) k l2 
Robbert Krebbers's avatar
Robbert Krebbers committed
682
683
684
685
686
    Forall2 P l1 l2.
  Proof.
    rewrite elem_of_mapM. intros Hl1. revert l2.
    induction Hl1; inversion_clear 1; constructor; auto.
  Qed.
687
End collection_monad.
688
689
690
691
692
693

(** Finite collections *)
Definition set_finite `{ElemOf A B} (X : B) :=  l : list A,  x, x  X  x  l.

Section finite.
  Context `{SimpleCollection A B}.
694
695
  Global Instance set_finite_subseteq :
     Proper (flip () ==> impl) (@set_finite A B _).
696
  Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed.
697
698
  Global Instance set_finite_proper : Proper (() ==> iff) (@set_finite A B _).
  Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed.
699
700
701
  Lemma empty_finite : set_finite .
  Proof. by exists []; intros ?; rewrite elem_of_empty. Qed.
  Lemma singleton_finite (x : A) : set_finite {[ x ]}.
Ralf Jung's avatar
Ralf Jung committed
702
  Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed.
703
704
705
706
707
708
  Lemma union_finite X Y : set_finite X  set_finite Y  set_finite (X  Y).
  Proof.
    intros [lX ?] [lY ?]; exists (lX ++ lY); intros x.
    rewrite elem_of_union, elem_of_app; naive_solver.
  Qed.
  Lemma union_finite_inv_l X Y : set_finite (X  Y)  set_finite X.
709
  Proof. intros [l ?]; exists l; set_solver. Qed.
710
  Lemma union_finite_inv_r X Y : set_finite (X  Y)  set_finite Y.
711
  Proof. intros [l ?]; exists l; set_solver. Qed.
712
713
714
715
716
End finite.

Section more_finite.
  Context `{Collection A B}.
  Lemma intersection_finite_l X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
717
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
718
  Lemma intersection_finite_r X Y : set_finite Y  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
719
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed.
720
  Lemma difference_finite X Y : set_finite X  set_finite (X  Y).
Ralf Jung's avatar
Ralf Jung committed
721
  Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed.
722
723
724
725
  Lemma difference_finite_inv X Y `{ x, Decision (x  Y)} :
    set_finite Y  set_finite (X  Y)  set_finite X.
  Proof.
    intros [l ?] [k ?]; exists (l ++ k).
726
    intros x ?; destruct (decide (x  Y)); rewrite elem_of_app; set_solver.
727
  Qed.
728
End more_finite.